Nonlinear term selection and parameter estimation in the identification of nonlinear reduced order state space models

被引:0
|
作者
Docter, W [1 ]
Georgakis, C [1 ]
机构
[1] Lehigh Univ, Chem Proc Modeling & Control Res Ctr, Bethlehem, PA 18015 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a general methodology for the development of Nonlinear Low Order Models (NLLOM) from data collected from detailed nonlinear simulation models. This methodology is divided into two tasks: development of a Average Linear Low Order Model (ALLOM) and augmentation of the ALLOM to form a NLLOM, the latter task being the focus of this paper. The tools examined for the nonlinear augmentation of the ALLOM include stepwise regression and nonlinear optimization. Results will be presented for the application of these techniques towards the development of an NLLOM from a detailed high purity distillation simulation. Copyright (C) 1998 IFAC.
引用
收藏
页码:335 / 340
页数:6
相关论文
共 50 条
  • [11] Sequential Monte Carlo methods for parameter estimation in nonlinear state-space models
    Gao, Meng
    Zhang, Hui
    COMPUTERS & GEOSCIENCES, 2012, 44 : 70 - 77
  • [12] Sequential Monte Carlo smoothing with application to parameter estimation in nonlinear state space models
    Olsson, Jimmy
    Cappe, Olivier
    Douc, Randal
    Moulines, Eric
    BERNOULLI, 2008, 14 (01) : 155 - 179
  • [13] Identification of nonlinear systems using Polynomial Nonlinear State Space models
    Paduart, Johan
    Lauwers, Lieve
    Swevers, Jan
    Smolders, Kris
    Schoukens, Johan
    Pintelon, Rik
    AUTOMATICA, 2010, 46 (04) : 647 - 656
  • [14] On the Investigation of Some Parameter Identification and Experimental Modal Filtering Issues for Nonlinear Reduced Order Models
    S. M. Spottswood
    R. J. Allemang
    Experimental Mechanics, 2007, 47 : 511 - 521
  • [15] On the investigation of some parameter identification and experimental modal filtering issues for nonlinear reduced order models
    Spottswood, M.
    Allemang, R. J.
    EXPERIMENTAL MECHANICS, 2007, 47 (04) : 511 - 521
  • [16] Recursive parameter and state estimation for an input nonlinear state space system using the hierarchical identification principle
    Wang, Xuehai
    Ding, Feng
    SIGNAL PROCESSING, 2015, 117 : 208 - 218
  • [17] Parameter reduction in nonlinear state-space identification of hysteresis
    Esfahani, Alireza Fakhrizadeh
    Dreesen, Philippe
    Tiels, Koen
    Noel, Jean-Philippe
    Schoukens, Johan
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2018, 104 : 884 - 895
  • [18] System identification of nonlinear state-space models
    Schon, Thomas B.
    Wills, Adrian
    Ninness, Brett
    AUTOMATICA, 2011, 47 (01) : 39 - 49
  • [19] State estimation-based parameter identification for a class of nonlinear fractional-order systems
    Oliva-Gonzalez, Lorenz Josue
    Martinez-Guerra, Rafael
    NONLINEAR DYNAMICS, 2024, 112 (08) : 6379 - 6402
  • [20] State estimation-based parameter identification for a class of nonlinear fractional-order systems
    Lorenz Josue Oliva-Gonzalez
    Rafael Martínez-Guerra
    Nonlinear Dynamics, 2024, 112 : 6379 - 6402