The Power State Estimation Method for High Energy Ternary Lithium-ion Batteries Based on the Online Collaborative Equivalent Modeling and Adaptive Correction - Unscented Kalman Filter

被引:1
|
作者
Fan, Yongcun [1 ]
Wang, Shunli [1 ]
Jiang, Cong [1 ]
Fernandez, Carlos [2 ]
机构
[1] Southwest Univ Sci & Technol, Sch Informat Engn, Mianyang 621010, Sichuan, Peoples R China
[2] Robert Gordon Univ, Sch Pharm & Life Sci, Aberdeen AB1 7GJ, Scotland
来源
基金
中国国家自然科学基金;
关键词
high energy lithium-ion battery; collaborative equivalent model; power state estimation; adaptive correction - Unscented Kalman Filter; output voltage tracking; OF-CHARGE ESTIMATION; HEALTH ESTIMATION; MANAGEMENT; SYSTEM; VOLTAGE; TEMPERATURE; RESISTANCE; VEHICLES; BEHAVIOR; PACK;
D O I
10.20964/2021.01.70
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Accurate power state estimation plays an important role in the real-time working state monitoring and safety control of high energy lithium-ion batteries. To solve the difficulty and low accuracy problems in its real-time power state estimation under various operating conditions, the working characteristics of the lithium cobalt oxide batteries are analyzed comprehensively under various operating conditions. An improved collaborative equivalent model is established to characterize its working characteristics and then the initial power state value is calibrated by using the experimental relationship between open circuit voltage and state of charge considering the importance of the precious estimation accuracy for the later iterate calculation and correction. And then, an adaptive correction - Unscented Kalman Filter algorithm is put forward and applied for the state of charge estimation and output voltage tracking so as to realize the real-time high-precision lithium-ion battery power state estimation. The experimental results show that the established model can predict the power state of high energy lithium-ion batteries conveniently with high convergency speed within 30 seconds, accurate output voltage tracking effect within 32 mV and high accuracy, the max estimation error of which is 3.87%, providing an effective working state monitoring and safety protection method in the cleaner production and power supply processes of the high energy lithium-ion batteries.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 50 条
  • [21] Online Internal Temperature Estimation for Lithium-Ion Batteries Based on Kalman Filter
    Sun, Jinlei
    Wei, Guo
    Pei, Lei
    Lu, Rengui
    Song, Kai
    Wu, Chao
    Zhu, Chunbo
    ENERGIES, 2015, 8 (05): : 4400 - 4415
  • [22] An improved adaptive unscented kalman filtering for state of charge online estimation of lithium-ion battery
    Zhang, Shuzhi
    Guo, Xu
    Zhang, Xiongwen
    JOURNAL OF ENERGY STORAGE, 2020, 32
  • [23] State of charge estimation of vehicle lithium-ion battery based on unscented Kalman filter
    Chen, Junlin
    Wang, Chun
    Pu, Long
    39TH YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION, YAC 2024, 2024, : 1934 - 1938
  • [24] Adaptive Square-Root Unscented Kalman Filter-Based State-of-Charge Estimation for Lithium-Ion Batteries with Model Parameter Online Identification
    Ouyang, Quan
    Ma, Rui
    Wu, Zhaoxiang
    Xu, Guotuan
    Wang, Zhisheng
    ENERGIES, 2020, 13 (18)
  • [25] A State of Charge Estimation Method Based on Adaptive Unscented Kalman Filter for Lithium-ion Parallel-connected Battery System
    Peng, Simin
    Chen, Chong
    Wang, Zhibing
    Yang, Xiaodong
    Xu, Zhen
    JOINT INTERNATIONAL CONFERENCE ON ENERGY, ECOLOGY AND ENVIRONMENT ICEEE 2018 AND ELECTRIC AND INTELLIGENT VEHICLES ICEIV 2018, 2018,
  • [26] An Adaptive State of Charge Estimation Method of Lithium-ion Battery Based on Residual Constraint Fading Factor Unscented Kalman Filter
    Feng, Juqiang
    Cai, Feng
    Yang, Jing
    Wang, Shunli
    Huang, Kaifeng
    IEEE ACCESS, 2022, 10 : 44549 - 44563
  • [27] State of Charge (SOC) Estimation of Lithium-ion Battery Based on Adaptive Square Root Unscented Kalman Filter
    Wang Kai
    Feng Xiao
    Pang Jinbo
    Ren Jun
    Duan Chongxiong
    Li Liwei
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2020, 15 (09): : 9499 - 9516
  • [28] State of charge estimation for lithium-ion battery based on improved online parameters identification and adaptive square root unscented Kalman filter
    Wang, Juntao
    Song, Jifeng
    Li, Yuanlong
    Ren, Tao
    Yang, Zhengye
    JOURNAL OF ENERGY STORAGE, 2024, 77
  • [29] A parameter adaptive method for state of charge estimation of lithium-ion batteries with an improved extended Kalman filter
    Shichun Yang
    Sida Zhou
    Yang Hua
    Xinan Zhou
    Xinhua Liu
    Yuwei Pan
    Heping Ling
    Billy Wu
    Scientific Reports, 11
  • [30] Enhanced Unscented Kalman Filter for Accurate State of Charge Estimation in Aerial Drone Lithium-Ion Batteries
    Monirul, Islam Md
    Qiu, Li
    Ali, Ahmad
    2024 IEEE 7TH INTERNATIONAL CONFERENCE ON INDUSTRIAL CYBER-PHYSICAL SYSTEMS, ICPS 2024, 2024,