An improved adaptive unscented kalman filtering for state of charge online estimation of lithium-ion battery

被引:100
|
作者
Zhang, Shuzhi [1 ]
Guo, Xu [1 ]
Zhang, Xiongwen [1 ]
机构
[1] Xi An Jiao Tong Univ, MOE Key Lab Thermofluid Sci & Engn, Xian 710049, Shaanxi, Peoples R China
来源
JOURNAL OF ENERGY STORAGE | 2020年 / 32卷
关键词
State of charge; Forgetting factor recursive least square; Improved adaptive unscented kalman filter; Singular value decomposition; Non-positive definite covariance matrix; Stability analysis; OF-THE-ART; LEAD/ACID BATTERIES; ENERGY MANAGEMENT; MODEL PARAMETERS; CAPACITY; PERFORMANCE; VALIDATION; SYSTEMS;
D O I
10.1016/j.est.2020.101980
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Precise state of charge (SOC) estimation is crucial to assure safe and reliable operation of lithium-ion battery in electric vehicles. Adaptive unscented Kalman filter (AUKF) has been intensively applied to estimate SOC due to its features of self-correction and high accuracy. Nevertheless, the estimation by traditional AUKF cannot proceed when error covariance matrix is non-positive definite, greatly influencing the stability of SOC estimation. To address this issue, an improved AUKF is proposed in this paper. Firstly, the forgetting factor recursive least square is employed to online identify parameters of electrical equivalent circuit model. With these identified parameters, an improved AUKF, whose Cholesky decomposition for error covariance matrix of tradition AUKF is replaced by singular value decomposition, is applied here to provide online accurate SOC estimation. The feasibility of the proposed method is verified by experimental data under Federal Urban Driving Schedule test. The validation results of robustness present that the algorithm has satisfactory robustness against inaccurate initial SOC. Moreover, through the comparison with traditional AUKF, it can be easily concluded that the proposed method can achieve precise and stable SOC estimation even though error covariance matrix is non-positive definite.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles
    Sun, Fengchun
    Hu, Xiaosong
    Zou, Yuan
    Li, Siguang
    [J]. ENERGY, 2011, 36 (05) : 3531 - 3540
  • [2] State of Charge Estimation of Lithium-Ion Battery Based on Improved Adaptive Unscented Kalman Filter
    Xing, Jie
    Wu, Peng
    [J]. SUSTAINABILITY, 2021, 13 (09)
  • [3] An unscented kalman filtering method for estimation of state-of-charge of lithium-ion battery
    Guo, Jishu
    Liu, Shulin
    Zhu, Rui
    [J]. FRONTIERS IN ENERGY RESEARCH, 2023, 10
  • [4] State of charge estimation for lithium-ion battery based on improved online parameters identification and adaptive square root unscented Kalman filter
    Wang, Juntao
    Song, Jifeng
    Li, Yuanlong
    Ren, Tao
    Yang, Zhengye
    [J]. JOURNAL OF ENERGY STORAGE, 2024, 77
  • [5] An improved adaptive spherical unscented Kalman filtering method for the accurate state-of-charge estimation of lithium-ion batteries
    Qi, Chuangshi
    Wang, Shunli
    Cao, Wen
    Yu, Peng
    Xie, Yanxin
    [J]. INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2022, 50 (10) : 3487 - 3502
  • [6] A method for state of charge and state of health estimation of lithium-ion battery based on adaptive unscented Kalman filter
    Liu, Shulin
    Dong, Xia
    Yu, Xiaodong
    Ren, Xiaoqing
    Zhang, Jinfeng
    Zhu, Rui
    [J]. ENERGY REPORTS, 2022, 8 : 426 - 436
  • [7] State of Charge and parameters estimation for Lithium-ion battery using Dual Adaptive Unscented Kalman Filter
    Guo, Hongzhen
    Wang, Zhonghua
    Li, Yueyang
    Wang, Dongxue
    Wang, Guangying
    [J]. 2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 4962 - 4966
  • [8] Adaptive Unscented Kalman Filter with Correntropy Loss for Robust State of Charge Estimation of Lithium-Ion Battery
    Sun, Quan
    Zhang, Hong
    Zhang, Jianrong
    Ma, Wentao
    [J]. ENERGIES, 2018, 11 (11)
  • [9] Adaptive Exponentially Weighted Extended Kalman Filtering for State of Charge Estimation of Lithium-ion Battery
    Li, Jin
    Wang, Shunli
    Chen, Lei
    He, Mingfang
    [J]. INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2022, 17 (07):
  • [10] Fractional Extended and Unscented Kalman Filtering for State of Charge Estimation of Lithium-Ion Batteries
    Kupper, Martin
    Funk, Christopher
    Eckert, Marius
    Hohmann, Soeren
    [J]. 2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 3855 - 3862