Tangent space to the manifold of critical classical Hamiltonians representable by tensor networks

被引:2
|
作者
Wu, Yantao [1 ]
机构
[1] Princeton Univ, Dept Phys, Princeton, NJ 08540 USA
关键词
RENORMALIZATION-GROUP;
D O I
10.1103/PhysRevE.100.023306
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We introduce a scheme to perform Monte Carlo renormalization group with the coupling constants of the system Hamiltonian encoded in a tensor network. With this scheme we compute the tangent space to the manifold of the critical Hamiltonians representable by a tensor network at the nearest-neighbor critical coupling for three models: the two-and three-dimensional Ising models and the two-dimensional three-state Potts model.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] TANGENT SPACE TO A CK MANIFOLD
    TAYLOR, LE
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 79 (04) : 746 - 746
  • [2] TANGENT SPACE TO A CK MANIFOLD
    TAYLOR, LE
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A170 - A170
  • [3] Determination of the critical manifold tangent space and curvature with Monte Carlo renormalization group
    Wu, Yantao
    Car, Roberto
    [J]. PHYSICAL REVIEW E, 2019, 100 (02)
  • [4] TSBP: Tangent Space Belief Propagation for Manifold Learning
    Cohn, Thomas
    Jenkins, Odest Chadwicke
    Desingh, Karthik
    Zeng, Zhen
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (04): : 6694 - 6701
  • [5] Incremental manifold learning via tangent space alignment
    Liu, Xiaoming
    Yin, Jianwei
    Feng, Zhilin
    Dong, Jinxiang
    [J]. ARTIFICIAL NEURAL NETWORKS IN PATTERN RECOGNITION, PROCEEDINGS, 2006, 4087 : 107 - 121
  • [6] Locality optimization for parent Hamiltonians of tensor networks
    Giudici, Giuliano
    Cirac, J. Ignacio
    Schuch, Norbert
    [J]. PHYSICAL REVIEW B, 2022, 106 (03)
  • [7] NONASYMPTOTIC RATES FOR MANIFOLD, TANGENT SPACE AND CURVATURE ESTIMATION
    Aamari, Eddie
    Levrard, Clement
    [J]. ANNALS OF STATISTICS, 2019, 47 (01): : 177 - 204
  • [8] Tensor fields of type (0, 2) on the tangent bundle of a Riemannian manifold
    Calvo, MD
    Keilhauer, GGR
    [J]. GEOMETRIAE DEDICATA, 1998, 71 (02) : 209 - 219
  • [9] Tensor Fields of Type (0, 2) on the Tangent Bundle of a Riemannian Manifold
    Maria del Carmen Calvo
    Guillermo G. R. Keilhauer
    [J]. Geometriae Dedicata, 1998, 71 : 209 - 219
  • [10] Characterizing Distances of Networks on the Tensor Manifold
    Islam, Bipul
    Liu, Ji
    Sandhu, Romeil
    [J]. COMPLEX NETWORKS AND THEIR APPLICATIONS VIII, VOL 1, 2020, 881 : 955 - 964