Determination of the critical manifold tangent space and curvature with Monte Carlo renormalization group

被引:4
|
作者
Wu, Yantao [1 ]
Car, Roberto [1 ,2 ]
机构
[1] Princeton Univ, Dept Phys, Princeton, NJ 08540 USA
[2] Princeton Univ, Dept Chem, Princeton, NJ 08540 USA
关键词
MODEL; BEHAVIOR;
D O I
10.1103/PhysRevE.100.022138
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We show that the critical manifold of a statistical mechanical system in the vicinity of a critical point is locally accessible through correlation functions at that point. A practical numerical method is presented to determine the tangent space and the curvature to the critical manifold with variational Monte Carlo renormalization group. Because of the use of a variational bias potential of the coarse-grained variables, critical slowing down is greatly alleviated in the Monte Carlo simulation. In addition, this method is free of truncation error. We study the isotropic Ising model on square and cubic lattices, the anisotropic Ising model, and the tricritical Ising model on square lattices to illustrate the method.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Critical point of the Kagome Potts model: a Monte Carlo renormalization group and scaling determination
    Chen, JA
    Hu, CK
    Wu, FY
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (39): : 7855 - 7864
  • [2] Dynamic Monte Carlo renormalization group determination of critical exponents with linearly changing temperature
    Zhong, F
    Xu, ZF
    [J]. PHYSICAL REVIEW B, 2005, 71 (13):
  • [3] Inverse Monte Carlo renormalization group transformations for critical phenomena
    Ron, D
    Swendsen, RH
    Brandt, A
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (27)
  • [4] NONASYMPTOTIC RATES FOR MANIFOLD, TANGENT SPACE AND CURVATURE ESTIMATION
    Aamari, Eddie
    Levrard, Clement
    [J]. ANNALS OF STATISTICS, 2019, 47 (01): : 177 - 204
  • [5] MONTE-CARLO RENORMALIZATION-GROUP STUDIES OF CRITICAL PHENOMENA
    SWENDSEN, RH
    [J]. JOURNAL OF APPLIED PHYSICS, 1982, 53 (03) : 1920 - 1924
  • [6] MONTE-CARLO RENORMALIZATION-GROUP TRANSFORMATIONS IN MOMENTUM SPACE
    SWENDSEN, RH
    [J]. PHYSICAL REVIEW LETTERS, 1981, 47 (16) : 1159 - 1162
  • [7] MONTE-CARLO RENORMALIZATION-GROUP WITH EVOLUTION IN THE SPACE OF PARAMETERS
    CATICHA, N
    CHAHINE, J
    DEFELICIO, JRD
    [J]. PHYSICAL REVIEW A, 1989, 40 (12): : 7431 - 7433
  • [8] MONTE-CARLO RENORMALIZATION GROUP
    SWENDSEN, RH
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (03): : 361 - 361
  • [9] MONTE-CARLO RENORMALIZATION GROUP
    SWENDSEN, RH
    [J]. PHYSICAL REVIEW LETTERS, 1979, 42 (14) : 859 - 861
  • [10] Neural Monte Carlo renormalization group
    Chung, Jui-Hui
    Kao, Ying-Jer
    [J]. PHYSICAL REVIEW RESEARCH, 2021, 3 (02):