Determination of the critical manifold tangent space and curvature with Monte Carlo renormalization group

被引:4
|
作者
Wu, Yantao [1 ]
Car, Roberto [1 ,2 ]
机构
[1] Princeton Univ, Dept Phys, Princeton, NJ 08540 USA
[2] Princeton Univ, Dept Chem, Princeton, NJ 08540 USA
关键词
MODEL; BEHAVIOR;
D O I
10.1103/PhysRevE.100.022138
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We show that the critical manifold of a statistical mechanical system in the vicinity of a critical point is locally accessible through correlation functions at that point. A practical numerical method is presented to determine the tangent space and the curvature to the critical manifold with variational Monte Carlo renormalization group. Because of the use of a variational bias potential of the coarse-grained variables, critical slowing down is greatly alleviated in the Monte Carlo simulation. In addition, this method is free of truncation error. We study the isotropic Ising model on square and cubic lattices, the anisotropic Ising model, and the tricritical Ising model on square lattices to illustrate the method.
引用
收藏
页数:7
相关论文
共 50 条