NONASYMPTOTIC RATES FOR MANIFOLD, TANGENT SPACE AND CURVATURE ESTIMATION

被引:40
|
作者
Aamari, Eddie [1 ]
Levrard, Clement [2 ]
机构
[1] Univ Calif San Diego, Dept Math, 9500 Gilman Dr, La Jolla, CA 92093 USA
[2] Batiment Sophie Germain Univ Paris Diderot, Lab Probabilites & Modeles Aleatoires, F-75013 Paris, France
来源
ANNALS OF STATISTICS | 2019年 / 47卷 / 01期
基金
欧洲研究理事会;
关键词
Geometric inference; minimax; manifold learning; CONFIDENCE;
D O I
10.1214/18-AOS1685
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Given a noisy sample from a submanifold M subset of R-D, we derive optimal rates for the estimation of tangent spaces TXM, the second fundamental form IIXM and the submanifold M. After motivating their study, we introduce a quantitative class of C-k-submanifolds in analogy with Holder classes. The proposed estimators are based on local polynomials and allow to deal simultaneously with the three problems at stake. Minimax lower bounds are derived using a conditional version of Assouad's lemma when the base point X is random.
引用
收藏
页码:177 / 204
页数:28
相关论文
共 50 条
  • [1] Determination of the critical manifold tangent space and curvature with Monte Carlo renormalization group
    Wu, Yantao
    Car, Roberto
    [J]. PHYSICAL REVIEW E, 2019, 100 (02)
  • [2] TANGENT SPACE TO A CK MANIFOLD
    TAYLOR, LE
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 79 (04) : 746 - 746
  • [3] TANGENT SPACE TO A CK MANIFOLD
    TAYLOR, LE
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A170 - A170
  • [4] THE SCALAR CURVATURE OF THE TANGENT BUNDLE OF A FINSLER MANIFOLD
    Bejancu, Aurel
    Farran, Hani Reda
    [J]. PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2011, 89 (103): : 57 - 68
  • [5] GENERALIZED COMMON CURVATURE OF SOME SUBSPACES OF THE TANGENT-SPACE OF AN ALMOST CONTACT METRIC MANIFOLD
    MIHOVANEHMER, V
    [J]. DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1979, 32 (09): : 1175 - 1178
  • [6] CURVATURE OF INDUCED RIEMANNIAN METRIC ON TANGENT BUNDLE OF A RIEMANNIAN MANIFOLD
    KOWALSKI, O
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1971, 250 : 124 - &
  • [7] Stochastic approximation algorithms: Nonasymptotic estimation of their convergence rates
    Kul'chitskii, OY
    Mozgovoi, AE
    [J]. AUTOMATION AND REMOTE CONTROL, 1997, 58 (11) : 1817 - 1823
  • [8] TSBP: Tangent Space Belief Propagation for Manifold Learning
    Cohn, Thomas
    Jenkins, Odest Chadwicke
    Desingh, Karthik
    Zeng, Zhen
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (04): : 6694 - 6701
  • [9] Incremental manifold learning via tangent space alignment
    Liu, Xiaoming
    Yin, Jianwei
    Feng, Zhilin
    Dong, Jinxiang
    [J]. ARTIFICIAL NEURAL NETWORKS IN PATTERN RECOGNITION, PROCEEDINGS, 2006, 4087 : 107 - 121
  • [10] ESTIMATION FOR JUMP PROCESSES IN TANGENT BUNDLE OF A RIEMANN MANIFOLD
    DUNCAN, TE
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 1978, 4 (03): : 265 - 274