Tensor fields of type (0, 2) on the tangent bundle of a Riemannian manifold

被引:3
|
作者
Calvo, MD [1 ]
Keilhauer, GGR [1 ]
机构
[1] Univ Buenos Aires, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
关键词
connection map; tangent bundle; tensor field;
D O I
10.1023/A:1005084210109
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
To any (0, 2)-tensor held on the tangent bundle of a Riemannian manifold, we associate a global matrix function. Based on this fact, natural tensor fields are defined and characterized, essentially by means of well-known algebraic results. In the symmetric case, this classification coincides with the one given by Kowalski-Sekizawa; in the skew-symmetric one, it does with that obtained by Janyska.
引用
收藏
页码:209 / 219
页数:11
相关论文
共 50 条
  • [1] Tensor Fields of Type (0, 2) on the Tangent Bundle of a Riemannian Manifold
    Maria del Carmen Calvo
    Guillermo G. R. Keilhauer
    Geometriae Dedicata, 1998, 71 : 209 - 219
  • [2] Conformal vector fields on tangent bundle of a Riemannian manifold
    Hedayatian, S
    Bidabad, B
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2005, 29 (A3): : 531 - 539
  • [3] Conformal vector fields on tangent bundle of a Riemannian manifold
    Peyghan, E.
    Heydari, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 347 (01) : 136 - 142
  • [4] On the Tangent Bundle of a Hypersurface in a Riemannian Manifold
    Hou, Zhonghua
    Sun, Lei
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2015, 36 (04) : 579 - 602
  • [5] On the Tangent Bundle of a Hypersurface in a Riemannian Manifold
    Zhonghua HOU
    Lei SUN
    Chinese Annals of Mathematics(Series B), 2015, 36 (04) : 579 - 602
  • [6] On the tangent bundle of a hypersurface in a Riemannian manifold
    Zhonghua Hou
    Lei Sun
    Chinese Annals of Mathematics, Series B, 2015, 36 : 579 - 602
  • [7] Natural tensor fields of type (0,2) on the tangent and cotangent bundles of a Fedosov manifold
    Araujo, Jose
    Keilhauer, Guillermo
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2006, 11 (02): : 11 - 19
  • [8] Infinitesimal transformations on the tangent bundle of a Riemannian manifold
    Necsuleu, Gh.
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 60 (01): : 29 - 34
  • [9] Connections on the generalized tangent bundle of a Riemannian manifold
    Blaga, Adara M.
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2011, 16 (01): : 27 - 36
  • [10] JACOBI FIELDS ALONG GEODESICS IN TANGENT BUNDLE OF A PSEUDO-RIEMANNIAN MANIFOLD
    VANCALCK, G
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 281 (14): : 565 - 567