Prandtl and Rayleigh numbers dependences in Rayleigh-Benard convection

被引:69
|
作者
Roche, PE [1 ]
Castaing, B
Chabaud, B
Hébral, B
机构
[1] Univ Grenoble 1, Ctr Rech Tres Basses Temp, F-38042 Grenoble 9, France
[2] Ecole Normale Super, Phys Mat Condensee Lab, F-75231 Paris 5, France
[3] Ecole Normale Super Lyon, F-69364 Lyon 7, France
来源
EUROPHYSICS LETTERS | 2002年 / 58卷 / 05期
关键词
D O I
10.1209/epl/i2002-00405-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using low-temperature gaseous helium close to the critical point, we investigate the Prandtl-number dependence of the effective heat conductivity (Nusselt number) for a 1/2 aspect ratio Rayleigh-Benard cell. Very weak dependence is observed in the range 0.7 < Pr < 21; 2 x 10(8) < Ra < 2 x 10(10) : the absolute value of the average logarithmic slope delta = (partial derivativeln Nu/partial derivativeln Pr)(Ra) is smaller than 0.03. A bimodality of Nu, with 7% difference between the two sets of data, is observed, which could explain some discrepancies between precise previous experiments in this range.
引用
收藏
页码:693 / 698
页数:6
相关论文
共 50 条
  • [31] Rayleigh and Prandtl number scaling in the bulk of Rayleigh-Benard turbulence
    Calzavarini, E
    Lohse, D
    Toschi, F
    Tripiccione, R
    PHYSICS OF FLUIDS, 2005, 17 (05) : 1 - 7
  • [32] Bifurcations and chaos in large-Prandtl number Rayleigh-Benard convection
    Paul, Supriyo
    Wahi, Pankaj
    Verma, Mahendra K.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2011, 46 (05) : 772 - 781
  • [33] Instabilities and chaos in low-Prandtl number rayleigh-Benard convection
    Nandukumar, Yada
    Pal, Pinaki
    COMPUTERS & FLUIDS, 2016, 138 : 61 - 66
  • [34] Dynamic bifurcation theory of Rayleigh-Benard convection with infinite Prandtl number
    Park, Jungho
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2006, 6 (03): : 591 - 604
  • [35] Patterns and bifurcations in low-Prandtl-number Rayleigh-Benard convection
    Mishra, P. K.
    Wahi, P.
    Verma, M. K.
    EPL, 2010, 89 (04)
  • [36] Turbulent Rayleigh-Benard convection in low Prandtl-number fluids
    Horanyi, S
    Krebs, L
    Müller, U
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1999, 42 (21) : 3983 - 4003
  • [37] Nonlinear Dynamics of Low-Prandtl Number Rayleigh-Benard Convection
    Wahi, Pankaj
    Mishra, P. K.
    Paul, S.
    Verma, M. K.
    IUTAM SYMPOSIUM ON NONLINEAR DYNAMICS FOR ADVANCED TECHNOLOGIES AND ENGINEERING DESIGN, 2013, 32 : 123 - 136
  • [38] Stationary statistical properties of Rayleigh-Benard convection at large Prandtl number
    Wang, Xiaoming
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2008, 61 (06) : 789 - 815
  • [39] Effects of Rayleigh and Weber numbers on two-layer turbulent Rayleigh-Benard convection
    Demou, Andreas D.
    Scapin, Nicolo
    Crialesi-Esposito, Marco
    Costa, Pedro
    Spiga, Filippo
    Brandt, Luca
    JOURNAL OF FLUID MECHANICS, 2024, 996
  • [40] Experimental study of Rayleigh-Benard convection at intermediate Rayleigh numbers using interferometric tomography
    Mishra, D
    Muralidhar, K
    Munshi, P
    FLUID DYNAMICS RESEARCH, 1999, 25 (05) : 231 - 255