Estimation of immune cell content in tumor using single-cell RNA-seq reference data

被引:23
|
作者
Yu, Xiaoqing [1 ]
Chen, Y. Ann [1 ]
Conejo-Garcia, Jose R. [2 ]
Chung, Christine H. [3 ]
Wang, Xuefeng [1 ]
机构
[1] H Lee Moffitt Canc Ctr & Res Inst, Dept Biostat & Bioinformat, Tampa, FL 33612 USA
[2] H Lee Moffitt Canc Ctr & Res Inst, Dept Immunol, Tampa, FL 33612 USA
[3] H Lee Moffitt Canc Ctr & Res Inst, Dept Head & Neck Endocrine Oncol, Tampa, FL 33612 USA
关键词
Single-cell RNA-seq; Tumor-infiltrating lymphocyte; Reference gene expression profiles; Head and neck cancer; REGULATORY T-CELLS; LANDSCAPE;
D O I
10.1186/s12885-019-5927-3
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: The rapid development of single-cell RNA sequencing (scRNA-seq) provides unprecedented opportunities to study the tumor ecosystem that involves a heterogeneous mixture of cell types. However, the majority of previous and current studies related to translational and molecular oncology have only focused on the bulk tumor and there is a wealth of gene expression data accumulated with matched clinical outcomes. Results: In this paper, we introduce a scheme for characterizing cell compositions from bulk tumor gene expression by integrating signatures learned from scRNA-seq data. We derived the reference expression matrix to each cell type based on cell subpopulations identified in head and neck cancer dataset. Our results suggest that scRNA-Seq-derived reference matrix outperforms the existing gene panel and reference matrix with respect to distinguishing immune cell subtypes. Conclusions: Findings and resources created from this study enable future and secondary analysis of tumor RNA mixtures in head and neck cancer for a more accurate cellular deconvolution, and can facilitate the profiling of the immune infiltration in other solid tumors due to the expression homogeneity observed in immune cells.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Locality Sensitive Imputation for Single-Cell RNA-Seq Data
    Moussa, Marmar
    Mandoiu, Ion I.
    BIOINFORMATICS RESEARCH AND APPLICATIONS, ISBRA 2018, 2018, 10847 : 347 - 360
  • [32] Supervised Adversarial Alignment of Single-Cell RNA-seq Data
    Ge, Songwei
    Wang, Haohan
    Alavi, Amir
    Xing, Eric
    Bar-Joseph, Ziv
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2021, 28 (05) : 501 - 513
  • [33] Phylogenetic inference from single-cell RNA-seq data
    Xuan Liu
    Jason I. Griffiths
    Isaac Bishara
    Jiayi Liu
    Andrea H. Bild
    Jeffrey T. Chang
    Scientific Reports, 13
  • [34] Phylogenetic inference from single-cell RNA-seq data
    Liu, Xuan
    Griffiths, Jason I.
    Bishara, Isaac
    Liu, Jiayi
    Bild, Andrea H.
    Chang, Jeffrey T.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [35] PsiNorm: a scalable normalization for single-cell RNA-seq data
    Borella, Matteo
    Martello, Graziano
    Risso, Davide
    Romualdi, Chiara
    BIOINFORMATICS, 2022, 38 (01) : 164 - 172
  • [36] Deep Learning for Clustering Single-cell RNA-seq Data
    Zhu, Yuan
    Bai, Litai
    Ning, Zilin
    Fu, Wenfei
    Liu, Jie
    Jiang, Linfeng
    Fei, Shihuang
    Gong, Shiyun
    Lu, Lulu
    Deng, Minghua
    Yi, Ming
    CURRENT BIOINFORMATICS, 2024, 19 (03) : 193 - 210
  • [37] SCell: integrated analysis of single-cell RNA-seq data
    Diaz, Aaron
    Liu, Siyuan J.
    Sandoval, Carmen
    Pollen, Alex
    Nowakowski, Tom J.
    Lim, Daniel A.
    Kriegstein, Arnold
    BIOINFORMATICS, 2016, 32 (14) : 2219 - 2220
  • [38] SCnorm: robust normalization of single-cell RNA-seq data
    Rhonda Bacher
    Li-Fang Chu
    Ning Leng
    Audrey P Gasch
    James A Thomson
    Ron M Stewart
    Michael Newton
    Christina Kendziorski
    Nature Methods, 2017, 14 : 584 - 586
  • [39] Using neural networks for reducing the dimensions of single-cell RNA-Seq data
    Lin, Chieh
    Jain, Siddhartha
    Kim, Hannah
    Bar-Joseph, Ziv
    NUCLEIC ACIDS RESEARCH, 2017, 45 (17)
  • [40] Statistical modeling of transcriptional regulatory states in single-cell RNA-Seq data of tumor and infiltrated immune cells
    Wan, Changlin
    Chang, Wennan
    Lu, Xiaoyu
    Sun, Yifan
    So, Kaman
    Cao, Sha
    Lu, Xiongbin
    Zhang, Chi
    CANCER RESEARCH, 2019, 79 (13)