Estimation of immune cell content in tumor using single-cell RNA-seq reference data

被引:23
|
作者
Yu, Xiaoqing [1 ]
Chen, Y. Ann [1 ]
Conejo-Garcia, Jose R. [2 ]
Chung, Christine H. [3 ]
Wang, Xuefeng [1 ]
机构
[1] H Lee Moffitt Canc Ctr & Res Inst, Dept Biostat & Bioinformat, Tampa, FL 33612 USA
[2] H Lee Moffitt Canc Ctr & Res Inst, Dept Immunol, Tampa, FL 33612 USA
[3] H Lee Moffitt Canc Ctr & Res Inst, Dept Head & Neck Endocrine Oncol, Tampa, FL 33612 USA
关键词
Single-cell RNA-seq; Tumor-infiltrating lymphocyte; Reference gene expression profiles; Head and neck cancer; REGULATORY T-CELLS; LANDSCAPE;
D O I
10.1186/s12885-019-5927-3
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: The rapid development of single-cell RNA sequencing (scRNA-seq) provides unprecedented opportunities to study the tumor ecosystem that involves a heterogeneous mixture of cell types. However, the majority of previous and current studies related to translational and molecular oncology have only focused on the bulk tumor and there is a wealth of gene expression data accumulated with matched clinical outcomes. Results: In this paper, we introduce a scheme for characterizing cell compositions from bulk tumor gene expression by integrating signatures learned from scRNA-seq data. We derived the reference expression matrix to each cell type based on cell subpopulations identified in head and neck cancer dataset. Our results suggest that scRNA-Seq-derived reference matrix outperforms the existing gene panel and reference matrix with respect to distinguishing immune cell subtypes. Conclusions: Findings and resources created from this study enable future and secondary analysis of tumor RNA mixtures in head and neck cancer for a more accurate cellular deconvolution, and can facilitate the profiling of the immune infiltration in other solid tumors due to the expression homogeneity observed in immune cells.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Clustering and visualization of single-cell RNA-seq data using path metrics
    Manousidaki, Andriana
    Little, Anna
    Xie, Yuying
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (05)
  • [42] Differential expression of single-cell RNA-seq data using Tweedie models
    Mallick, Himel
    Chatterjee, Suvo
    Chowdhury, Shrabanti
    Chatterjee, Saptarshi
    Rahnavard, Ali
    Hicks, Stephanie C.
    STATISTICS IN MEDICINE, 2022, 41 (18) : 3492 - 3510
  • [43] Single-cell RNA-seq data augmentation using generative Fourier transformer
    Nouri, Nima
    COMMUNICATIONS BIOLOGY, 2025, 8 (01)
  • [44] Generalized Cell Type Annotation and Discovery for Single-Cell RNA-Seq Data
    Zhai, Yuyao
    Chen, Liang
    Deng, Minghua
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 4, 2023, : 5402 - 5410
  • [45] Realistic Cell Type Annotation and Discovery for Single-cell RNA-seq Data
    Zhai, Yuyao
    Chen, Liang
    Deng, Minghua
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 4967 - 4974
  • [46] SCSA: A Cell Type Annotation Tool for Single-Cell RNA-seq Data
    Cao, Yinghao
    Wang, Xiaoyue
    Peng, Gongxin
    FRONTIERS IN GENETICS, 2020, 11
  • [47] Robust identification of perturbed cell types in single-cell RNA-seq data
    Nicol, Phillip B.
    Paulson, Danielle
    Qian, Gege
    Liu, X. Shirley
    Irizarry, Rafael
    Sahu, Avinash D.
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [48] The contribution of cell cycle to heterogeneity in single-cell RNA-seq data Reply
    不详
    NATURE BIOTECHNOLOGY, 2016, 34 (06) : 593 - 595
  • [49] Reply to The contribution of cell cycle to heterogeneity in single-cell RNA-seq data
    Andrew McDavid
    Greg Finak
    Raphael Gottardo
    Nature Biotechnology, 2016, 34 : 593 - 595
  • [50] Computational analysis of alternative polyadenylation from standard RNA-seq and single-cell RNA-seq data
    Gao, Yipeng
    Li, Wei
    MRNA 3' END PROCESSING AND METABOLISM, 2021, 655 : 225 - 243