Rank estimation of a generalized fixed-effects regression model

被引:38
|
作者
Abrevaya, J [1 ]
机构
[1] Univ Chicago, Grad Sch Business, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
fixed-effects models; generalized regression model; panel data; rank estimators; maximum score estimator;
D O I
10.1016/S0304-4076(99)00027-5
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper considers estimation of a fixed-effects version of the generalized regression model of Han (1987, Journal of Econometrics 35, 303-316). The model allows for censoring, places no parametric assumptions on the error disturbances, and allows the fixed effects to be correlated with the covariates. We introduce a class of rank estimators that consistently estimate the coefficients in the generalized! fixed-effects regression model. The maximum score estimator for the binary choice fixed-effects model is part of this class. Like the maximum score estimator, the class of rank estimators converge at less than the root n rate. Smoothed versions of these estimators, however, converge at rates approaching the root n rate. In a version of the model that allows for truncated data, a sufficient condition for consistency of the estimators is that the error disturbances have an increasing hazard function. (C) 2000 Elsevier Science S.A. All rights reserved. JEL classification: C23; C14.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 50 条