Rank estimation of a generalized fixed-effects regression model

被引:38
|
作者
Abrevaya, J [1 ]
机构
[1] Univ Chicago, Grad Sch Business, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
fixed-effects models; generalized regression model; panel data; rank estimators; maximum score estimator;
D O I
10.1016/S0304-4076(99)00027-5
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper considers estimation of a fixed-effects version of the generalized regression model of Han (1987, Journal of Econometrics 35, 303-316). The model allows for censoring, places no parametric assumptions on the error disturbances, and allows the fixed effects to be correlated with the covariates. We introduce a class of rank estimators that consistently estimate the coefficients in the generalized! fixed-effects regression model. The maximum score estimator for the binary choice fixed-effects model is part of this class. Like the maximum score estimator, the class of rank estimators converge at less than the root n rate. Smoothed versions of these estimators, however, converge at rates approaching the root n rate. In a version of the model that allows for truncated data, a sufficient condition for consistency of the estimators is that the error disturbances have an increasing hazard function. (C) 2000 Elsevier Science S.A. All rights reserved. JEL classification: C23; C14.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 50 条
  • [21] ESTIMATION OF A FIXED EFFECTS BIVARIATE CENSORED REGRESSION-MODEL
    AI, CR
    CHEN, CY
    [J]. ECONOMICS LETTERS, 1992, 40 (04) : 403 - 406
  • [22] On the Unidentifiability of the Fixed-Effects 3PL Model
    San Martin, Ernesto
    Gonzalez, Jorge
    Tuerlinckx, Francis
    [J]. PSYCHOMETRIKA, 2015, 80 (02) : 450 - 467
  • [23] Practical fixed-effects estimation methods for the three-way error-components model
    Andrews, Martyn
    Schank, Thorsten
    Upward, Richard
    [J]. STATA JOURNAL, 2006, 6 (04): : 461 - 481
  • [24] New formulations for recursive residuals as a diagnostic tool in the fixed-effects linear model with design matrices of arbitrary rank
    Godolphin, J. D.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (06) : 2119 - 2128
  • [25] Semiparametric fixed-effects estimator
    Libois, Francois
    Verardi, Vincenzo
    [J]. STATA JOURNAL, 2013, 13 (02): : 329 - 336
  • [26] A review of Stata commands for fixed-effects estimation in normal linear models
    McCaffrey, Daniel F.
    Lockwood, J. R.
    Mihaly, Kata
    Sass, Tim R.
    [J]. STATA JOURNAL, 2012, 12 (03): : 406 - 432
  • [27] Statistical inference for fixed-effects partially linear regression models with errors in variables
    Haibo Zhou
    Jinhong You
    Bin Zhou
    [J]. Statistical Papers, 2010, 51 : 629 - 650
  • [28] Estimation of partially specified spatial panel data models with fixed-effects
    Ai, Chunrong
    Zhang, Yuanqing
    [J]. ECONOMETRIC REVIEWS, 2017, 36 (1-3) : 6 - 22
  • [29] ESTIMATING LABOR SUPPLY DISEQUILIBRIUM WITH FIXED-EFFECTS RANDOM-COEFFICIENTS REGRESSION
    CONWAY, KS
    KNIESNER, TJ
    [J]. APPLIED ECONOMICS, 1992, 24 (07) : 781 - 789
  • [30] Assessing the consistency of the fixed-effects estimator: a regression-based Wald test
    Spierdijk, Laura
    [J]. EMPIRICAL ECONOMICS, 2023, 64 (04) : 1599 - 1630