Rank estimation of a generalized fixed-effects regression model

被引:38
|
作者
Abrevaya, J [1 ]
机构
[1] Univ Chicago, Grad Sch Business, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
fixed-effects models; generalized regression model; panel data; rank estimators; maximum score estimator;
D O I
10.1016/S0304-4076(99)00027-5
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper considers estimation of a fixed-effects version of the generalized regression model of Han (1987, Journal of Econometrics 35, 303-316). The model allows for censoring, places no parametric assumptions on the error disturbances, and allows the fixed effects to be correlated with the covariates. We introduce a class of rank estimators that consistently estimate the coefficients in the generalized! fixed-effects regression model. The maximum score estimator for the binary choice fixed-effects model is part of this class. Like the maximum score estimator, the class of rank estimators converge at less than the root n rate. Smoothed versions of these estimators, however, converge at rates approaching the root n rate. In a version of the model that allows for truncated data, a sufficient condition for consistency of the estimators is that the error disturbances have an increasing hazard function. (C) 2000 Elsevier Science S.A. All rights reserved. JEL classification: C23; C14.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 50 条
  • [31] Testing for state dependence in the fixed-effects ordered logit model
    Bartolucci, Francesco
    Pigini, Claudia
    Valentini, Francesco
    [J]. ECONOMICS LETTERS, 2023, 222
  • [32] Erratum to: On the Unidentifiability of the Fixed-Effects 3PL Model
    Ernesto San Martín
    Jorge González
    Francis Tuerlinckx
    [J]. Psychometrika, 2015, 80 : 1146 - 1146
  • [33] Predictors of Physical Activity in Middle Childhood. A Fixed-Effects Regression Approach
    Zahl-Thanem, Tonje
    Steinsbekk, Silje
    Wichstrom, Lars
    [J]. FRONTIERS IN PUBLIC HEALTH, 2018, 6
  • [34] Correlation bias correction in two-way fixed-effects linear regression
    Gaure, Simen
    [J]. STAT, 2014, 3 (01): : 379 - 390
  • [35] Assessing the consistency of the fixed-effects estimator: a regression-based Wald test
    Laura Spierdijk
    [J]. Empirical Economics, 2023, 64 : 1599 - 1630
  • [36] Statistical inference for fixed-effects partially linear regression models with errors in variables
    Zhou, Haibo
    You, Jinhong
    Zhou, Bin
    [J]. STATISTICAL PAPERS, 2010, 51 (03) : 629 - 650
  • [37] On the Fixed-Effects Vector Decomposition
    Breusch, Trevor
    Ward, Michael B.
    Hoa Thi Minh Nguyen
    Kompas, Tom
    [J]. POLITICAL ANALYSIS, 2011, 19 (02) : 123 - 134
  • [38] On an Unidentified Fixed-Effects Three-Parameter Logistic Model
    Ogasawara, Haruhiko
    [J]. JAPANESE PSYCHOLOGICAL RESEARCH, 2020, 62 (03) : 196 - 205
  • [39] Sample sizes required to detect interactions between two binary fixed-effects in a mixed-effects linear regression model
    Leon, Andrew C.
    Heo, Moonseong
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (03) : 603 - 608
  • [40] Conditional inference and bias reduction for partial effects estimation of fixed-effects logit models
    Francesco Bartolucci
    Claudia Pigini
    Francesco Valentini
    [J]. Empirical Economics, 2023, 64 : 2257 - 2290