Leapfrog estimation of a fixed-effects model with unknown transformation of the dependent variable

被引:33
|
作者
Abrevaya, J [1 ]
机构
[1] Univ Chicago, Grad Sch Business, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
semiparametric estimation; fixed-effects models; transformation models; multiple-spell duration models;
D O I
10.1016/S0304-4076(99)00009-3
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper considers a fixed-effects panel version of the linear transformation model, in which the dependent variable is h(y(1)) for an unspecified, strictly monotonic h. Examples of the model include the multiple-spell proportional hazards model and dependent-variable transformation models (e.g., the Box-Cox model) with fixed effects. A semiparametric estimator, called the leapfrog estimator, is introduced and shown to be root n-consistent and asymptotically normal. The leapfrog estimator allows for It to vary over time and for heteroskedasticity across observational units. Related semiparametric estimators are considered, and a general covariance result for estimators based on second-order U-processes is presented. (C) 1999 Elsevier Science S.A. All rights reserved.
引用
收藏
页码:203 / 228
页数:26
相关论文
共 50 条