Weak Galerkin finite element method for the nonlinear Schrodinger equation

被引:0
|
作者
Aziz, Dalai Ismael [1 ]
Hussein, Ahmed J. [1 ]
机构
[1] Univ Thi Qar, Coll Educ Pure Sci, Nasiriyah, Iraq
关键词
WGFEM; nonlinear Schrodinger equation; semi-discrete; Fully discrete (backward Euler scheme; Crank-Nicolson scheme); error estimates; DIFFERENCE-SCHEMES;
D O I
10.22075/ijnaa.2022.27518.3634
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The numerical technique for a two-dimensional time-dependent nonlinear Schrodinger equation is the subject of this work. The approximations are produced using the weak Galerkin finite element technique with semi-discrete and fully discrete finite element methods, respectively, using the backward Euler method and the crank-Nicolson method in time. Using the elliptic projection operator, we provide optimum L-2 error estimates for semi and fully discrete weak Galerkin finite elements. Finally, we present numerical examples provided to verify our theoretical results.
引用
收藏
页码:2453 / 2468
页数:16
相关论文
共 50 条
  • [41] A weak Galerkin mixed finite element method for the Helmholtz equation with large wave numbers
    Wang, Ruishu
    Wang, Xiaoshen
    Zhai, Qilong
    Zhang, Kai
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (03) : 1009 - 1032
  • [42] Developing weak Galerkin finite element methods for the wave equation
    Huang, Yunqing
    Li, Jichun
    Li, Dan
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (03) : 868 - 884
  • [43] A weak Galerkin generalized multiscale finite element method
    Mu, Lin
    Wang, Junping
    Ye, Xiu
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 305 : 68 - 81
  • [44] Error estimates of H 1-Galerkin mixed finite element method for Schrodinger equation
    Liu Yang
    Li Hong
    Wang Jin-feng
    [J]. APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2009, 24 (01) : 83 - 89
  • [45] A weak Galerkin finite element method for the Oseen equations
    Liu, Xin
    Li, Jian
    Chen, Zhangxin
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2016, 42 (06) : 1473 - 1490
  • [46] A weak Galerkin finite element method for the Oseen equations
    Xin Liu
    Jian Li
    Zhangxin Chen
    [J]. Advances in Computational Mathematics, 2016, 42 : 1473 - 1490
  • [47] A weak Galerkin finite element method for the stokes equations
    Wang, Junping
    Ye, Xiu
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2016, 42 (01) : 155 - 174
  • [48] A weak Galerkin finite element method for the stokes equations
    Junping Wang
    Xiu Ye
    [J]. Advances in Computational Mathematics, 2016, 42 : 155 - 174
  • [49] A TWO-GRID FINITE-ELEMENT METHOD FOR THE NONLINEAR SCHRODINGER EQUATION
    Jin, Jicheng
    Wei, Ning
    Zhang, Hongmei
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2015, 33 (02) : 146 - 157
  • [50] A Weak Galerkin Finite Element Method for the Maxwell Equations
    Mu, Lin
    Wang, Junping
    Ye, Xiu
    Zhang, Shangyou
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2015, 65 (01) : 363 - 386