Weak Galerkin finite element method for the nonlinear Schrodinger equation

被引:0
|
作者
Aziz, Dalai Ismael [1 ]
Hussein, Ahmed J. [1 ]
机构
[1] Univ Thi Qar, Coll Educ Pure Sci, Nasiriyah, Iraq
关键词
WGFEM; nonlinear Schrodinger equation; semi-discrete; Fully discrete (backward Euler scheme; Crank-Nicolson scheme); error estimates; DIFFERENCE-SCHEMES;
D O I
10.22075/ijnaa.2022.27518.3634
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The numerical technique for a two-dimensional time-dependent nonlinear Schrodinger equation is the subject of this work. The approximations are produced using the weak Galerkin finite element technique with semi-discrete and fully discrete finite element methods, respectively, using the backward Euler method and the crank-Nicolson method in time. Using the elliptic projection operator, we provide optimum L-2 error estimates for semi and fully discrete weak Galerkin finite elements. Finally, we present numerical examples provided to verify our theoretical results.
引用
收藏
页码:2453 / 2468
页数:16
相关论文
共 50 条
  • [31] Superconvergence analysis of conforming finite element method for nonlinear Schrodinger equation
    Shi, Dongyang
    Liao, Xin
    Wang, Lele
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2016, 289 : 298 - 310
  • [32] Application of weak Galerkin finite element method for nonlinear chemotaxis and haptotaxis models
    Khaled-Abad, Leila Jafarian
    Salehi, Rezvan
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2021, 409
  • [33] Application of weak Galerkin finite element method for nonlinear chemotaxis and haptotaxis models
    Khaled-Abad, Leila Jafarian
    Salehi, Rezvan
    [J]. Applied Mathematics and Computation, 2021, 409
  • [34] The adaptive SAV weak Galerkin finite element method for the Allen-Cahn equation
    Liu, Ying
    Shen, Xiaoqin
    Guan, Zhen
    Nie, Yufeng
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 151 : 449 - 460
  • [35] A weak Galerkin least squares finite element method of Cauchy problem for Poisson equation
    Wang, Xiaoshen
    Ye, Xiu
    Zhang, Shangyou
    Zhu, Peng
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 401
  • [36] An H1 weak Galerkin mixed finite element method for Sobolev equation
    Xie, Chun-Mei
    Feng, Min-Fu
    Wei, Hua-Yi
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 423
  • [37] A Stabilizer Free Weak Galerkin Finite Element Method for Elliptic Equation with Lower Regularity
    Wang, Yiying
    Zou, Yongkui
    Liu, Xuan
    Zhou, Chenguang
    [J]. NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2024, 17 (02) : 514 - 533
  • [38] Weak Galerkin finite element method for a class of time fractional generalized Burgers' equation
    Wang, Haifeng
    Xu, Da
    Zhou, Jun
    Guo, Jing
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (01) : 732 - 749
  • [39] A stabilizer-free weak Galerkin mixed finite element method for the biharmonic equation
    Gu, Shanshan
    Huo, Fuchang
    Liu, Shicheng
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 176 : 109 - 121
  • [40] Galerkin finite element method for the nonlinear fractional Ginzburg-Landau equation
    Li, Meng
    Huang, Chengming
    Wang, Nan
    [J]. APPLIED NUMERICAL MATHEMATICS, 2017, 118 : 131 - 149