The main aim of this paper is to apply the conforming bilinear finite element to solve the nonlinear Schrodinger equation (NLSE). Firstly, the stability and convergence for time discrete scheme are proved. Secondly, through a new estimate approach, the optimal order error estimates and superclose properties in H-1-norm are obtained with Backward Euler (B-E) and Crank-Nicolson (C-N) fully-discrete schemes, the global superconvergence results are deduced with the help of interpolation postprocessing technique. Finally, some numerical examples are provided to verify the theoretical analysis. (C) 2016 Elsevier Inc. All rights reserved.
机构:
Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R ChinaZhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
Shi Dongyang
Wang Pingli
论文数: 0引用数: 0
h-index: 0
机构:
Xuchang Univ, Sch Math & Stat, Xuchang 461000, Peoples R ChinaZhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
Wang Pingli
Zhao Yanmin
论文数: 0引用数: 0
h-index: 0
机构:
Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
Xuchang Univ, Sch Math & Stat, Xuchang 461000, Peoples R ChinaZhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
机构:
Pingdingshan Univ, Sch Math & Stat, Pingdingshan 467000, Henan, Peoples R ChinaPingdingshan Univ, Sch Math & Stat, Pingdingshan 467000, Henan, Peoples R China
Wang, Junjun
Yang, Xiaoxia
论文数: 0引用数: 0
h-index: 0
机构:
Pingdingshan Univ, Sch Math & Stat, Pingdingshan 467000, Henan, Peoples R ChinaPingdingshan Univ, Sch Math & Stat, Pingdingshan 467000, Henan, Peoples R China