Superconvergence Analysis of Bilinear Finite Element for the Nonlinear Schrodinger Equation on the Rectangular Mesh

被引:14
|
作者
Tian, Zhikun [1 ,4 ]
Chen, Yanping [2 ]
Wang, Jianyun [3 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[2] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[3] Hunan Univ Technol, Sch Sci, Zhuzhou 412007, Hunan, Peoples R China
[4] Hunan Inst Engn, Coll Sci, Xiangtan 411104, Hunan, Peoples R China
基金
美国国家科学基金会;
关键词
Finite element method; nonlinear Schrodinger equation; superconvergence; interpolation post-processing; GALERKIN METHODS; DIFFERENCE METHOD; WAVE OPERATOR; APPROXIMATION;
D O I
10.4208/aamm.OA-2017-0156
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the superconvergence property of a time-dependent nonlinear Schrodinger equation with the bilinear finite element method on the rectangular mesh. We prove the superclose error estimate in H-1-norm with order O(h(2)) between the approximated solution and the elliptic projection of the exact solution. Moreover, we obtain the global superconvergence result in H-1-norm with order O(h(2)) by the interpolation post-processing operator.
引用
收藏
页码:468 / 484
页数:17
相关论文
共 50 条