A weak Galerkin generalized multiscale finite element method

被引:5
|
作者
Mu, Lin [1 ]
Wang, Junping [2 ]
Ye, Xiu [3 ]
机构
[1] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA
[2] Natl Sci Fdn, Div Math Sci, 4201 Wilson Blvd, Arlington, VA 22230 USA
[3] Univ Arkansas, Dept Math, Little Rock, AR 72204 USA
基金
美国国家科学基金会;
关键词
Weak Galerkin; Multiscale; Finite element methods; Elliptic problems with rapidly oscillating or high contrast coefficients; Polyhedral meshes; ELLIPTIC PROBLEMS;
D O I
10.1016/j.cam.2016.03.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a general framework for weak Galerkin generalized multiscale (WG-GMS) finite element method for the elliptic problems with rapidly oscillating or high contrast coefficients. This general WG-GMS method features in high order accuracy on general meshes and can work with multiscale basis derived by different numerical schemes. A special case is studied under this WG-GMS framework in which the multiscale basis functions are obtained by solving local problem with the weak Galerkin finite element method. Convergence analysis and numerical experiments are obtained for the special case. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:68 / 81
页数:14
相关论文
共 50 条
  • [1] Generalized weak Galerkin finite element method for linear elasticity interface problems
    Wang, Yue
    Gao, Fuzheng
    [J]. NUMERICAL ALGORITHMS, 2024,
  • [2] A modified weak Galerkin finite element method
    Wang, X.
    Malluwawadu, N. S.
    Gao, F.
    McMillan, T. C.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 271 : 319 - 327
  • [3] Weak Galerkin finite element method for a class of time fractional generalized Burgers' equation
    Wang, Haifeng
    Xu, Da
    Zhou, Jun
    Guo, Jing
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (01) : 732 - 749
  • [4] Generalized weak Galerkin finite element methods for biharmonic equations
    Li, Dan
    Wang, Chunmei
    Wang, Junping
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 434
  • [5] A weak Galerkin finite element method for the Oseen equations
    Liu, Xin
    Li, Jian
    Chen, Zhangxin
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2016, 42 (06) : 1473 - 1490
  • [6] A weak Galerkin finite element method for the Oseen equations
    Xin Liu
    Jian Li
    Zhangxin Chen
    [J]. Advances in Computational Mathematics, 2016, 42 : 1473 - 1490
  • [7] A weak Galerkin finite element method for Burgers' equation
    Chen, Yanli
    Zhang, Tie
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 348 : 103 - 119
  • [8] A weak Galerkin finite element method for the stokes equations
    Wang, Junping
    Ye, Xiu
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2016, 42 (01) : 155 - 174
  • [9] A weak Galerkin finite element method for the stokes equations
    Junping Wang
    Xiu Ye
    [J]. Advances in Computational Mathematics, 2016, 42 : 155 - 174
  • [10] A Weak Galerkin Finite Element Method for the Maxwell Equations
    Lin Mu
    Junping Wang
    Xiu Ye
    Shangyou Zhang
    [J]. Journal of Scientific Computing, 2015, 65 : 363 - 386