Weak Galerkin finite element method for the nonlinear Schrodinger equation

被引:0
|
作者
Aziz, Dalai Ismael [1 ]
Hussein, Ahmed J. [1 ]
机构
[1] Univ Thi Qar, Coll Educ Pure Sci, Nasiriyah, Iraq
关键词
WGFEM; nonlinear Schrodinger equation; semi-discrete; Fully discrete (backward Euler scheme; Crank-Nicolson scheme); error estimates; DIFFERENCE-SCHEMES;
D O I
10.22075/ijnaa.2022.27518.3634
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The numerical technique for a two-dimensional time-dependent nonlinear Schrodinger equation is the subject of this work. The approximations are produced using the weak Galerkin finite element technique with semi-discrete and fully discrete finite element methods, respectively, using the backward Euler method and the crank-Nicolson method in time. Using the elliptic projection operator, we provide optimum L-2 error estimates for semi and fully discrete weak Galerkin finite elements. Finally, we present numerical examples provided to verify our theoretical results.
引用
收藏
页码:2453 / 2468
页数:16
相关论文
共 50 条