共 50 条
Weak Galerkin finite element method for the nonlinear Schrodinger equation
被引:0
|作者:
Aziz, Dalai Ismael
[1
]
Hussein, Ahmed J.
[1
]
机构:
[1] Univ Thi Qar, Coll Educ Pure Sci, Nasiriyah, Iraq
来源:
关键词:
WGFEM;
nonlinear Schrodinger equation;
semi-discrete;
Fully discrete (backward Euler scheme;
Crank-Nicolson scheme);
error estimates;
DIFFERENCE-SCHEMES;
D O I:
10.22075/ijnaa.2022.27518.3634
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
The numerical technique for a two-dimensional time-dependent nonlinear Schrodinger equation is the subject of this work. The approximations are produced using the weak Galerkin finite element technique with semi-discrete and fully discrete finite element methods, respectively, using the backward Euler method and the crank-Nicolson method in time. Using the elliptic projection operator, we provide optimum L-2 error estimates for semi and fully discrete weak Galerkin finite elements. Finally, we present numerical examples provided to verify our theoretical results.
引用
收藏
页码:2453 / 2468
页数:16
相关论文