Fully Discrete Galerkin Finite Element Method for the Cubic Nonlinear Schrodinger Equation

被引:11
|
作者
Wang, Jianyun [1 ]
Huang, Yunqing [2 ]
机构
[1] Hunan Univ Technol, Sch Sci, Zhuzhou 412007, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Peoples R China
基金
美国国家科学基金会;
关键词
Finite element method; nonlinear Schrdinger equations; backward Euler scheme; Crank-Nicolson scheme; NUMERICAL-SOLUTION; DIFFERENCE-SCHEMES; DISCRETIZATIONS; APPROXIMATIONS;
D O I
10.4208/nmtma.2017.y16008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with numerical method for a two-dimensional timedependent cubic nonlinear Schrodinger equation. The approximations are obtained by the Galerkin finite element method in space in conjunction with the backward Euler method and the Crank-Nicolson method in time, respectively. We prove optimal L-2 error estimates for two fully discrete schemes by using elliptic projection operator. Finally, a numerical example is provided to verify our theoretical results.
引用
收藏
页码:671 / 688
页数:18
相关论文
共 50 条