Bayesian inference of scaled versus fractional Brownian motion

被引:16
|
作者
Thapa, Samudrajit [1 ,2 ]
Park, Seongyu [3 ]
Kim, Yeongjin [3 ]
Jeon, Jae-Hyung [3 ]
Metzler, Ralf [4 ]
Lomholt, Michael A. [5 ]
机构
[1] Tel Aviv Univ, Sackler Ctr Computat Mol & Mat Sci, IL-6997801 Tel Aviv, Israel
[2] Tel Aviv Univ, Sch Mech Engn, IL-6997801 Tel Aviv, Israel
[3] Pohang Univ Sci & Technol POSTECH, Dept Phys, Pohang 37673, South Korea
[4] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany
[5] Univ Southern Denmark, Dept Phys Chem & Pharm, PhyLife, Campusvej 55, DK-5230 Odense M, Denmark
基金
新加坡国家研究基金会;
关键词
Bayesian inference; scaled Brownian motion; single particle tracking; ANOMALOUS DIFFUSION; SUBDIFFUSION; COEFFICIENTS; MODELS;
D O I
10.1088/1751-8121/ac60e7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a Bayesian inference scheme for scaled Brownian motion, and investigate its performance on synthetic data for parameter estimation and model selection in a combined inference with fractional Brownian motion. We include the possibility of measurement noise in both models. We find that for trajectories of a few hundred time points the procedure is able to resolve well the true model and parameters. Using the prior of the synthetic data generation process also for the inference, the approach is optimal based on decision theory. We include a comparison with inference using a prior different from the data generating one.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Bayesian inference for fractional Oscillating Brownian motion
    Araya, Hector
    Slaoui, Meryem
    Torres, Soledad
    [J]. COMPUTATIONAL STATISTICS, 2022, 37 (02) : 887 - 907
  • [2] Bayesian inference for fractional Oscillating Brownian motion
    Héctor Araya
    Meryem Slaoui
    Soledad Torres
    [J]. Computational Statistics, 2022, 37 : 887 - 907
  • [3] Bayesian inference of fractional brownian motion of multivariate stochastic differential equations
    Al-Qazaz, Qutaiba Nabeel Nayef
    Ali, Ahmed H.
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 2425 - 2454
  • [4] Statistical inference with fractional Brownian motion
    Kukush A.
    Mishura Y.
    Valkeila E.
    [J]. Statistical Inference for Stochastic Processes, 2005, 8 (1) : 71 - 93
  • [5] Bayesian inference for partially observed stochastic differential equations driven by fractional Brownian motion
    Beskos, A.
    Dureau, J.
    Kalogeropoulos, K.
    [J]. BIOMETRIKA, 2015, 102 (04) : 809 - 827
  • [6] Bayesian model selection with fractional Brownian motion
    Krog, Jens
    Jacobsen, Lars H.
    Lund, Frederik W.
    Wustner, Daniel
    Lomholt, Michael A.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,
  • [7] Bayesian parameter inference for partially observed stochastic differential equations driven by fractional Brownian motion
    Mohamed Maama
    Ajay Jasra
    Hernando Ombao
    [J]. Statistics and Computing, 2023, 33
  • [8] Bayesian parameter inference for partially observed stochastic differential equations driven by fractional Brownian motion
    Maama, Mohamed
    Jasra, Ajay
    Ombao, Hernando
    [J]. STATISTICS AND COMPUTING, 2023, 33 (01)
  • [9] Bayesian estimation of the Hurst parameter of fractional Brownian motion
    Chen, Chen-Yueh
    Shafie, Khalil
    Lin, Yen-Kuang
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (06) : 4760 - 4766
  • [10] Bayesian Sequential Estimation of a Drift of Fractional Brownian Motion
    Cetin, U.
    Novikov, A.
    Shiryaev, A. N.
    [J]. SEQUENTIAL ANALYSIS-DESIGN METHODS AND APPLICATIONS, 2013, 32 (03): : 288 - 296