Bayesian inference of scaled versus fractional Brownian motion

被引:16
|
作者
Thapa, Samudrajit [1 ,2 ]
Park, Seongyu [3 ]
Kim, Yeongjin [3 ]
Jeon, Jae-Hyung [3 ]
Metzler, Ralf [4 ]
Lomholt, Michael A. [5 ]
机构
[1] Tel Aviv Univ, Sackler Ctr Computat Mol & Mat Sci, IL-6997801 Tel Aviv, Israel
[2] Tel Aviv Univ, Sch Mech Engn, IL-6997801 Tel Aviv, Israel
[3] Pohang Univ Sci & Technol POSTECH, Dept Phys, Pohang 37673, South Korea
[4] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany
[5] Univ Southern Denmark, Dept Phys Chem & Pharm, PhyLife, Campusvej 55, DK-5230 Odense M, Denmark
基金
新加坡国家研究基金会;
关键词
Bayesian inference; scaled Brownian motion; single particle tracking; ANOMALOUS DIFFUSION; SUBDIFFUSION; COEFFICIENTS; MODELS;
D O I
10.1088/1751-8121/ac60e7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a Bayesian inference scheme for scaled Brownian motion, and investigate its performance on synthetic data for parameter estimation and model selection in a combined inference with fractional Brownian motion. We include the possibility of measurement noise in both models. We find that for trajectories of a few hundred time points the procedure is able to resolve well the true model and parameters. Using the prior of the synthetic data generation process also for the inference, the approach is optimal based on decision theory. We include a comparison with inference using a prior different from the data generating one.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] The multiparameter fractional Brownian motion
    Herbin, Erick
    Merzbach, Ely
    [J]. MATH EVERYWHERE: DETERMINISTIC AND STOCHASTIC MODELLING IN BIOMEDICINE, ECONOMICS AND INDUSTRY, 2007, : 93 - +
  • [42] Piecewise fractional Brownian motion
    Perrin, E
    Harba, R
    Iribarren, I
    Jennane, R
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (03) : 1211 - 1215
  • [43] On Fractional Brownian Motion and Wavelets
    S. Albeverio
    P. E. T. Jorgensen
    A. M. Paolucci
    [J]. Complex Analysis and Operator Theory, 2012, 6 : 33 - 63
  • [44] Differentiable Bayesian inference of SDE parameters using a pathwise series expansion of Brownian motion
    Ghosh, Sanmitra
    Birrell, Paul J.
    De Angelis, Daniela
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [45] Simulation of fractional brownian motion
    Ruemelin, W.
    [J]. Proceedings of the IFIP Conference on Fractals in the Fundamental and Applied Sciences, 1991,
  • [46] On the Generalized Fractional Brownian Motion
    Zili M.
    [J]. Mathematical Models and Computer Simulations, 2018, 10 (6) : 759 - 769
  • [47] Arbitrage with fractional Brownian motion
    Rogers, LCG
    [J]. MATHEMATICAL FINANCE, 1997, 7 (01) : 95 - 105
  • [48] Random diffusivity models for scaled Brownian motion
    dos Santos, Maike A. F.
    Menon Junior, Luiz
    [J]. CHAOS SOLITONS & FRACTALS, 2021, 144
  • [49] STATISTICAL INFERENCE FOR MODELS DRIVEN BY n-TH ORDER FRACTIONAL BROWNIAN MOTION
    Chaouch, Hicham
    El Maroufy, Hamid
    El Omari, Mohamed
    [J]. THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2023, : 29 - 43
  • [50] A Note on the Fractional Integrated Fractional Brownian Motion
    Charles El-Nouty
    [J]. Acta Applicandae Mathematica, 2003, 78 : 103 - 114