Bayesian inference for fractional Oscillating Brownian motion

被引:2
|
作者
Araya, Hector [1 ]
Slaoui, Meryem [2 ]
Torres, Soledad [3 ]
机构
[1] Univ Valparaiso, Fac Ciencias, Inst Estadist, Valparaiso, Chile
[2] Univ Lille, Lab Paul Painleve, F-59655 Villeneuve Dascq, France
[3] Univ Valparaiso, Fac Ingn, CIMFAV, Valparaiso, Chile
关键词
Parameter estimation; Bayesian method; MCMC; ABC; Discontinuous diffusion; Fractional Brownian motion; COMPUTATION;
D O I
10.1007/s00180-021-01146-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper deals with the problem of parameter estimation in a class of stochastic differential equations driven by a fractional Brownian motion with H >= 1/2 and a discontinuous coefficient in the diffusion. Two Bayesian type estimators are proposed for the diffusion parameters based on Markov Chain Monte Carlo and Approximate Bayesian Computation methods.
引用
收藏
页码:887 / 907
页数:21
相关论文
共 50 条
  • [1] Bayesian inference for fractional Oscillating Brownian motion
    Héctor Araya
    Meryem Slaoui
    Soledad Torres
    [J]. Computational Statistics, 2022, 37 : 887 - 907
  • [2] Bayesian inference of scaled versus fractional Brownian motion
    Thapa, Samudrajit
    Park, Seongyu
    Kim, Yeongjin
    Jeon, Jae-Hyung
    Metzler, Ralf
    Lomholt, Michael A.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (19)
  • [3] Bayesian inference of fractional brownian motion of multivariate stochastic differential equations
    Al-Qazaz, Qutaiba Nabeel Nayef
    Ali, Ahmed H.
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 2425 - 2454
  • [4] Statistical inference with fractional Brownian motion
    Kukush A.
    Mishura Y.
    Valkeila E.
    [J]. Statistical Inference for Stochastic Processes, 2005, 8 (1) : 71 - 93
  • [5] Bayesian inference for partially observed stochastic differential equations driven by fractional Brownian motion
    Beskos, A.
    Dureau, J.
    Kalogeropoulos, K.
    [J]. BIOMETRIKA, 2015, 102 (04) : 809 - 827
  • [6] Bayesian model selection with fractional Brownian motion
    Krog, Jens
    Jacobsen, Lars H.
    Lund, Frederik W.
    Wustner, Daniel
    Lomholt, Michael A.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,
  • [7] Bayesian parameter inference for partially observed stochastic differential equations driven by fractional Brownian motion
    Mohamed Maama
    Ajay Jasra
    Hernando Ombao
    [J]. Statistics and Computing, 2023, 33
  • [8] Bayesian parameter inference for partially observed stochastic differential equations driven by fractional Brownian motion
    Maama, Mohamed
    Jasra, Ajay
    Ombao, Hernando
    [J]. STATISTICS AND COMPUTING, 2023, 33 (01)
  • [9] Bayesian estimation of the Hurst parameter of fractional Brownian motion
    Chen, Chen-Yueh
    Shafie, Khalil
    Lin, Yen-Kuang
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (06) : 4760 - 4766
  • [10] Bayesian Sequential Estimation of a Drift of Fractional Brownian Motion
    Cetin, U.
    Novikov, A.
    Shiryaev, A. N.
    [J]. SEQUENTIAL ANALYSIS-DESIGN METHODS AND APPLICATIONS, 2013, 32 (03): : 288 - 296