Dynamic causal modelling for EEG and MEG

被引:132
|
作者
Kiebel, Stefan J. [1 ]
Garrido, Marta I. [1 ]
Moran, Rosalyn J. [1 ]
Friston, Karl J. [1 ]
机构
[1] UCL, Wellcome Trust Ctr Neuroimaging, Inst Neurol, London WC1N 3AR, England
基金
英国惠康基金;
关键词
Magnetoencephalography; Electroencephalography; Dynamic system; Connectivity; Bayesian;
D O I
10.1007/s11571-008-9038-0
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Dynamic Causal Modelling (DCM) is an approach first introduced for the analysis of functional magnetic resonance imaging (fMRI) to quantify effective connectivity between brain areas. Recently, this framework has been extended and established in the magneto/encephalography (M/EEG) domain. DCM for M/EEG entails the inversion a full spatiotemporal model of evoked responses, over multiple conditions. This model rests on a biophysical and neurobiological generative model for electrophysiological data. A generative model is a prescription of how data are generated. The inversion of a DCM provides conditional densities on the model parameters and, indeed on the model itself. These densities enable one to answer key questions about the underlying system. A DCM comprises two parts; one part describes the dynamics within and among neuronal sources, and the second describes how source dynamics generate data in the sensors, using the lead-field. The parameters of this spatiotemporal model are estimated using a single (iterative) Bayesian procedure. In this paper, we will motivate and describe the current DCM framework. Two examples show how the approach can be applied to M/EEG experiments.
引用
收藏
页码:121 / 136
页数:16
相关论文
共 50 条
  • [31] Ant Colony System Optimization for Spatiotemporal Modelling of Combined EEG and MEG Data
    Opoku, Eugene A.
    Ahmed, Syed Ejaz
    Song, Yin
    Nathoo, Farouk S.
    ENTROPY, 2021, 23 (03)
  • [32] Dynamic causal modelling of evoked brain responses
    Friston, K
    Stephan, KE
    EUROPEAN PSYCHIATRY, 2005, 20 : S193 - S194
  • [33] Dynamic causal modelling of distributed electromagnetic responses
    Daunizeau, Jean
    Kiebel, Stefan J.
    Friston, Karl J.
    NEUROIMAGE, 2009, 47 (02) : 590 - 601
  • [34] Dynamic Causal Modelling for magneto- and electroencephalography
    Kiebel, S. J.
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2012, 57 : 316 - 316
  • [35] Source modelling of the EEG and MEG oddball response in a subject with a large P300
    Berg, P
    Kakigi, R
    Scherg, M
    Dobel, C
    Zobel, E
    FUNCTIONAL NEUROSCIENCE: EVOKED POTENTIALS AND MAGNETIC FIELDS, 1999, (49): : 189 - 193
  • [36] DYNAMO: Dynamic Multi-Model Source Localization Method for EEG and/or MEG
    Antelis, Javier M.
    Minguez, Javier
    2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2010, : 5141 - 5144
  • [37] Dynamical causal modelling for M/EEG: Spatial and temporal symmetry constraints
    Fastenrath, Matthias
    Friston, Karl J.
    Kiebel, Stefan J.
    NEUROIMAGE, 2009, 44 (01) : 154 - 163
  • [38] EEG/MEG error bounds for a dynamic dipole source with a realistic head model
    Muravchik, C
    Bria, O
    Nehorai, A
    METHODS OF INFORMATION IN MEDICINE, 2000, 39 (02) : 110 - 113
  • [39] Comparison between EEG and MEG of static and dynamic resting-state networks
    Cho, SungJun
    van Es, Mats
    Woolrich, Mark
    Gohil, Chetan
    HUMAN BRAIN MAPPING, 2024, 45 (13)
  • [40] Transferal From EEG to MEG
    Riaz, Usama
    INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2021, 168 : S10 - S10