Dynamic causal modelling for EEG and MEG

被引:132
|
作者
Kiebel, Stefan J. [1 ]
Garrido, Marta I. [1 ]
Moran, Rosalyn J. [1 ]
Friston, Karl J. [1 ]
机构
[1] UCL, Wellcome Trust Ctr Neuroimaging, Inst Neurol, London WC1N 3AR, England
基金
英国惠康基金;
关键词
Magnetoencephalography; Electroencephalography; Dynamic system; Connectivity; Bayesian;
D O I
10.1007/s11571-008-9038-0
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Dynamic Causal Modelling (DCM) is an approach first introduced for the analysis of functional magnetic resonance imaging (fMRI) to quantify effective connectivity between brain areas. Recently, this framework has been extended and established in the magneto/encephalography (M/EEG) domain. DCM for M/EEG entails the inversion a full spatiotemporal model of evoked responses, over multiple conditions. This model rests on a biophysical and neurobiological generative model for electrophysiological data. A generative model is a prescription of how data are generated. The inversion of a DCM provides conditional densities on the model parameters and, indeed on the model itself. These densities enable one to answer key questions about the underlying system. A DCM comprises two parts; one part describes the dynamics within and among neuronal sources, and the second describes how source dynamics generate data in the sensors, using the lead-field. The parameters of this spatiotemporal model are estimated using a single (iterative) Bayesian procedure. In this paper, we will motivate and describe the current DCM framework. Two examples show how the approach can be applied to M/EEG experiments.
引用
收藏
页码:121 / 136
页数:16
相关论文
共 50 条
  • [21] Dynamic causal modelling of induced responses
    Chen, C. C.
    Kiebel, S. J.
    Friston, K. J.
    NEUROIMAGE, 2008, 41 (04) : 1293 - 1312
  • [22] Dynamic causal modelling of immune heterogeneity
    Parr, Thomas
    Bhat, Anjali
    Zeidman, Peter
    Goel, Aimee
    Billig, Alexander J.
    Moran, Rosalyn
    Friston, Karl J.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [23] Dynamic causal modelling of brain responses
    Friston, K. J.
    JOURNAL OF PSYCHOPHYSIOLOGY, 2006, 20 (04) : 322 - 322
  • [24] Dynamic Causal Modelling of Hierarchical Planning
    Liang, Qunjun
    Li, Jinhui
    Zheng, Senning
    Liao, Jiajun
    Huang, Ruiwang
    NEUROIMAGE, 2022, 258
  • [25] Dynamic Causal Modelling of Active Vision
    Parr, Thomas
    Mirza, M. Berk
    Cagnan, Hayriye
    Friston, EKarl J.
    JOURNAL OF NEUROSCIENCE, 2019, 39 (32): : 6265 - 6275
  • [26] Dynamic causal modelling of eye movements during pursuit: Confirming precision-encoding in V1 using MEG
    Adams, Rick A.
    Bauer, Markus
    Pinotsis, Dimitris
    Friston, Karl J.
    NEUROIMAGE, 2016, 132 : 175 - 189
  • [27] THE FUTURE OF THE EEG AND MEG
    WIKSWO, JP
    GEVINS, A
    WILLIAMSON, SJ
    ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1993, 87 (01): : 1 - 9
  • [28] On the opposition of EEG and MEG
    Rampp, Stefan
    Stefan, Hermann
    CLINICAL NEUROPHYSIOLOGY, 2007, 118 (08) : 1658 - 1659
  • [29] MEG and EEG in epilepsy
    Barkley, GL
    Baumgartner, C
    JOURNAL OF CLINICAL NEUROPHYSIOLOGY, 2003, 20 (03) : 163 - 178
  • [30] FOCI IN THE MEG AND EEG
    VIETH, J
    STEFAN, H
    MEYER, C
    GRUMMICH, P
    HAUCK, D
    ULLEIN, T
    EPILEPSIA, 1988, 29 (03) : 352 - 352