Dynamical causal modelling for M/EEG: Spatial and temporal symmetry constraints

被引:25
|
作者
Fastenrath, Matthias [2 ]
Friston, Karl J. [1 ]
Kiebel, Stefan J. [1 ]
机构
[1] UCL, Inst Neurol, Wellcome Trust Ctr Neuroimaging, London WC1N 3AR, England
[2] Otto VonGuericke Univ Magdegurg, Dept Expt Psychol, Magdeburg, Germany
基金
英国惠康基金;
关键词
EEG; MEG; Dynamic causal modelling; Equivalent current dipole; Symmetry; EQUIVALENT CURRENT DIPOLE; UNILATERAL DEAFNESS; SOURCE LOCALIZATION; EVOKED-RESPONSES; EEG ASYMMETRY; EEG/MEG; BRAIN; POTENTIALS; MEG/EEG; MEG;
D O I
10.1016/j.neuroimage.2008.07.041
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We describe the use of spatial and temporal constraints in dynamic causal modelling (DCM) of magneto- and electroencephalography (M/EEG) data. DCM for M/EEG is based on a spatiotemporal, generative model of electromagnetic brain activity. The temporal dynamics are described by neural-mass models of equivalent current dipole (ECD) sources and their spatial expression is modelled by parameterized lead-field functions. Often, in classical ECD models, symmetry constraints are used to model homologous pairs of dipoles in both hemispheres. These constraints are motivated by assumptions about symmetric activation of bilateral sensory sources. In classical approaches, these constraints are 'hard'; i.e. the parameters of homologous dipoles are shared. Here, in the context of DCM, we illustrate the use of informed Bayesian priors to implement 'soft' symmetry constraints that are expressed in the posterior estimates only when supported by the data. Critically, with DCM one can deploy symmetry constraints in either the temporal or spatial components of the model. This enables one to test for symmetry in temporal (neural-mass) parameters in the presence of non-symmetric spatial expressions of homologous sources (and vice versa). Furthermore, we demonstrate that Bayesian model comparison can be used to identify the best models among a range of symmetric and non-symmetric variants. Our main finding is that the use of 'soft' symmetry priors is recommended for evoked responses to bilateral sensory input. We illustrate the use of symmetry constraints in DCM on synthetic and real EEG data. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:154 / 163
页数:10
相关论文
共 50 条
  • [1] The nonlinear dynamical analysis of the EEG in schizophrenia with temporal and spatial embedding dimension
    Lee, YJ
    Zhu, ZS
    Xu, YH
    Shen, MF
    Tong, SB
    Thakor, NV
    JOURNAL OF MEDICAL ENGINEERING & TECHNOLOGY, 2001, 25 (02) : 79 - 83
  • [2] A causal modelling approach to spatial and temporal confounding in environmental impact studies
    Paul, Warren L.
    ENVIRONMETRICS, 2011, 22 (05) : 626 - 638
  • [3] Dynamic causal modelling for EEG and MEG
    Stefan J. Kiebel
    Marta I. Garrido
    Rosalyn J. Moran
    Karl J. Friston
    Cognitive Neurodynamics, 2008, 2 : 121 - 136
  • [4] Dynamic causal modelling for EEG and MEG
    Kiebel, Stefan J.
    Garrido, Marta I.
    Moran, Rosalyn J.
    Friston, Karl J.
    COGNITIVE NEURODYNAMICS, 2008, 2 (02) : 121 - 136
  • [5] Temporal Symmetry Constraints in Block Matching
    Bartels, C.
    de Haan, G.
    ISCE: 2009 IEEE 13TH INTERNATIONAL SYMPOSIUM ON CONSUMER ELECTRONICS, VOLS 1 AND 2, 2009, : 635 - 638
  • [6] Spatial -: temporal modelling
    Klimesová, D
    Ocelíková, E
    INES 2005: 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT ENGINEERING SYSTEMS, 2005, : 169 - 172
  • [7] Identification of spatial and temporal features of EEG
    Jrad, Nisrine
    Congedo, Marco
    NEUROCOMPUTING, 2012, 90 : 66 - 71
  • [8] Temporal and Spatial Characteristics of Meditation EEG
    Travis, Frederick
    PSYCHOLOGICAL TRAUMA-THEORY RESEARCH PRACTICE AND POLICY, 2020, 12 (02) : 111 - 115
  • [9] Trees and spatial topology change in causal dynamical triangulations
    Ambjorn, J.
    Budd, T. G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (31)
  • [10] SCOD: Dynamical Spatial Constraints for Object Detection
    Zhang, Kai-Jun
    Guo, Cheng-Hao
    Niu, Zhong-Han
    Liu, Lu-Fei
    Yang, Yu-Bin
    MULTIMEDIA MODELING (MMM 2019), PT I, 2019, 11295 : 17 - 28