Dynamical causal modelling for M/EEG: Spatial and temporal symmetry constraints

被引:25
|
作者
Fastenrath, Matthias [2 ]
Friston, Karl J. [1 ]
Kiebel, Stefan J. [1 ]
机构
[1] UCL, Inst Neurol, Wellcome Trust Ctr Neuroimaging, London WC1N 3AR, England
[2] Otto VonGuericke Univ Magdegurg, Dept Expt Psychol, Magdeburg, Germany
基金
英国惠康基金;
关键词
EEG; MEG; Dynamic causal modelling; Equivalent current dipole; Symmetry; EQUIVALENT CURRENT DIPOLE; UNILATERAL DEAFNESS; SOURCE LOCALIZATION; EVOKED-RESPONSES; EEG ASYMMETRY; EEG/MEG; BRAIN; POTENTIALS; MEG/EEG; MEG;
D O I
10.1016/j.neuroimage.2008.07.041
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We describe the use of spatial and temporal constraints in dynamic causal modelling (DCM) of magneto- and electroencephalography (M/EEG) data. DCM for M/EEG is based on a spatiotemporal, generative model of electromagnetic brain activity. The temporal dynamics are described by neural-mass models of equivalent current dipole (ECD) sources and their spatial expression is modelled by parameterized lead-field functions. Often, in classical ECD models, symmetry constraints are used to model homologous pairs of dipoles in both hemispheres. These constraints are motivated by assumptions about symmetric activation of bilateral sensory sources. In classical approaches, these constraints are 'hard'; i.e. the parameters of homologous dipoles are shared. Here, in the context of DCM, we illustrate the use of informed Bayesian priors to implement 'soft' symmetry constraints that are expressed in the posterior estimates only when supported by the data. Critically, with DCM one can deploy symmetry constraints in either the temporal or spatial components of the model. This enables one to test for symmetry in temporal (neural-mass) parameters in the presence of non-symmetric spatial expressions of homologous sources (and vice versa). Furthermore, we demonstrate that Bayesian model comparison can be used to identify the best models among a range of symmetric and non-symmetric variants. Our main finding is that the use of 'soft' symmetry priors is recommended for evoked responses to bilateral sensory input. We illustrate the use of symmetry constraints in DCM on synthetic and real EEG data. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:154 / 163
页数:10
相关论文
共 50 条
  • [31] Modelling temporal biomarkers with semiparametric nonlinear dynamical systems
    Sun, Ming
    Zeng, Donglin
    Wang, Yuanjia
    BIOMETRIKA, 2021, 108 (01) : 199 - 214
  • [32] Principle component analysis and model reduction for dynamical systems with symmetry constraints
    Shah, Mili
    Sorensen, Danny C.
    2005 44th IEEE Conference on Decision and Control & European Control Conference, Vols 1-8, 2005, : 2260 - 2264
  • [33] On the symmetry of solutions in non-smooth dynamical systems with two constraints
    Luo, ACJ
    JOURNAL OF SOUND AND VIBRATION, 2004, 273 (4-5) : 1118 - 1126
  • [34] Estimation of M/EEG Non-stationary Brain Activity Using Spatio-temporal Sparse Constraints
    Martinez-Vargas, J. D.
    Grisales-Franco, F. M.
    Castellanos-Dominguez, G.
    ARTIFICIAL COMPUTATION IN BIOLOGY AND MEDICINE, PT I (IWINAC 2015), 2015, 9107 : 429 - 438
  • [35] Dynamic causal modelling of fluctuating connectivity in resting-state EEG
    Van de Steen, Frederik
    Almgren, Hannes
    Razi, Adeel
    Friston, Karl
    Marinazzo, Daniele
    NEUROIMAGE, 2019, 189 : 476 - 484
  • [36] Ranking Causal Anomalies via Temporal and Dynamical Analysis on Vanishing Correlations
    Cheng, Wei
    Zhang, Kai
    Chen, Haifeng
    Jiang, Guofei
    Chen, Zhengzhang
    Wang, Wei
    KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 805 - 814
  • [37] Symmetry breaking as a prelude to implied constraints: A constraint modelling pattern
    Frisch, AM
    Jefferson, C
    Miguel, I
    ECAI 2004: 16TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2004, 110 : 171 - 175
  • [38] EEG temporal-spatial transformer for person identification
    Du, Yang
    Xu, Yongling
    Wang, Xiaoan
    Liu, Li
    Ma, Pengcheng
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [39] Fmapping scalp EEG with high temporal and spatial resolution
    Freeman, WJ
    Burke, BC
    Holmes, MD
    BIOLOGICAL PSYCHIATRY, 2003, 53 (08) : 149S - 149S
  • [40] Hierarchal Online Temporal and Spatial EEG Seizure Detection
    Mansouri, Amirsalar
    Singh, Sanjay
    Sayood, Khalid
    2017 IEEE INTERNATIONAL CONFERENCE ON ELECTRO INFORMATION TECHNOLOGY (EIT), 2017, : 416 - 421