Dynamic causal modelling for EEG and MEG

被引:132
|
作者
Kiebel, Stefan J. [1 ]
Garrido, Marta I. [1 ]
Moran, Rosalyn J. [1 ]
Friston, Karl J. [1 ]
机构
[1] UCL, Wellcome Trust Ctr Neuroimaging, Inst Neurol, London WC1N 3AR, England
基金
英国惠康基金;
关键词
Magnetoencephalography; Electroencephalography; Dynamic system; Connectivity; Bayesian;
D O I
10.1007/s11571-008-9038-0
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Dynamic Causal Modelling (DCM) is an approach first introduced for the analysis of functional magnetic resonance imaging (fMRI) to quantify effective connectivity between brain areas. Recently, this framework has been extended and established in the magneto/encephalography (M/EEG) domain. DCM for M/EEG entails the inversion a full spatiotemporal model of evoked responses, over multiple conditions. This model rests on a biophysical and neurobiological generative model for electrophysiological data. A generative model is a prescription of how data are generated. The inversion of a DCM provides conditional densities on the model parameters and, indeed on the model itself. These densities enable one to answer key questions about the underlying system. A DCM comprises two parts; one part describes the dynamics within and among neuronal sources, and the second describes how source dynamics generate data in the sensors, using the lead-field. The parameters of this spatiotemporal model are estimated using a single (iterative) Bayesian procedure. In this paper, we will motivate and describe the current DCM framework. Two examples show how the approach can be applied to M/EEG experiments.
引用
收藏
页码:121 / 136
页数:16
相关论文
共 50 条
  • [1] Dynamic causal modelling for EEG and MEG
    Stefan J. Kiebel
    Marta I. Garrido
    Rosalyn J. Moran
    Karl J. Friston
    Cognitive Neurodynamics, 2008, 2 : 121 - 136
  • [2] Dynamic Causal Modeling for EEG and MEG
    Kiebel, Stefan J.
    Garrido, Marta I.
    Moran, Rosalyn
    Chen, Chun-Chuan
    Friston, Karl J.
    HUMAN BRAIN MAPPING, 2009, 30 (06) : 1866 - 1876
  • [3] Dynamic causal modelling of evoked responses in EEG/MEG with lead field parameterization
    Kiebel, SJ
    David, O
    Friston, KJ
    NEUROIMAGE, 2006, 30 (04) : 1273 - 1284
  • [4] Dynamic causal modeling of evoked responses in EEG and MEG
    David, Olivier
    Kiebel, Stefan J.
    Harrison, Lee M.
    Mattout, Jrmie
    Kilner, James M.
    Friston, Karl J.
    NEUROIMAGE, 2006, 30 (04) : 1255 - 1272
  • [5] Development of face recognition: Dynamic causal modelling of MEG data
    He, Wei
    Johnson, Blake W.
    DEVELOPMENTAL COGNITIVE NEUROSCIENCE, 2018, 30 : 13 - 22
  • [6] Prediction, precision, and context: dynamic causal modelling of MEG and ECoG
    Auksztulewicz, Ryszard
    Friston, Karl
    Nobre, Anna Ch.
    INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2016, 108 : 19 - 20
  • [7] Comparing dynamic causal models of neurovascular coupling with fMRI and EEG/MEG
    Jafarian, Amirhossein
    Litvak, Vladimir
    Cagnan, Hayriye
    Friston, Karl J.
    Zeidman, Peter
    NEUROIMAGE, 2020, 216
  • [8] Dynamic causal modelling of fluctuating connectivity in resting-state EEG
    Van de Steen, Frederik
    Almgren, Hannes
    Razi, Adeel
    Friston, Karl
    Marinazzo, Daniele
    NEUROIMAGE, 2019, 189 : 476 - 484
  • [9] Dynamic causal modelling of precision and synaptic gain in visual perception - an EEG study
    Brown, Harriet R.
    Friston, Karl J.
    NEUROIMAGE, 2012, 63 (01) : 223 - 231
  • [10] Dynamic Causal Modelling of the Reduced Habituation to Painful Stimuli in Migraine: An EEG Study
    Bassez, Iege
    Van de Steen, Frederik
    Ricci, Katia
    Vecchio, Eleonora
    Gentile, Eleonora
    Marinazzo, Daniele
    de Tommaso, Marina
    BRAIN SCIENCES, 2020, 10 (10) : 1 - 11