Scanning probe microscopy as a scalpel to probe filament formation in conductive bridging memory devices

被引:19
|
作者
Celano, Umberto [1 ,2 ]
Goux, Ludovic [1 ]
Opsomer, Karl [1 ]
Iapichino, Martina [1 ]
Belmonte, Attilio [1 ,3 ]
Franquet, Alexys [1 ]
Hoflijk, Ilse [1 ]
Detavernier, Christophe [4 ]
Jurczak, Malgorzata [1 ]
Vandervorst, Wilfried [1 ,2 ]
机构
[1] IMEC, B-3001 Louvain, Belgium
[2] Katholieke Univ Leuven, Dept Phys & Astron IKS, B-3001 Heverlee, Belgium
[3] Katholieke Univ Leuven, Dept Phys & Astron SPS, B-3001 Heverlee, Belgium
[4] Univ Ghent, B-9000 Ghent, Belgium
关键词
CBRAM; C-AFM; Conductive filament; Resistive switching; GROWTH;
D O I
10.1016/j.mee.2013.06.001
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
One promising technology under consideration for future non-volatile memory is conductive bridging random access memory (CBRAM). These devices rely on a reversible change in resistance of a dielectric layer sandwiched between two metal electrodes. To unravel the underlying processes, we present in this work an innovative technique to observe conductive filament in CBRAM devices programmed under real operative conditions. We show the different properties of the conductive filament for the respective on/off resistive states. We demonstrate a novel usage of scanning probe microscopy whereby the tip is used to remove (de-process) the top electrode of the CBRAM device while subsequently we use conductive atomic force microscopy (C-AFM) to characterize the dielectric layer of fresh, set and reset devices. The devices are first programmed under their normal operational conditions, secondly exposed to the layer removal procedure and finally analyzed using C-AFM. Our results indicate that the on/off state of the devices can be linked to the presence or not of an highly conductive filament. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:67 / 70
页数:4
相关论文
共 50 条
  • [31] Scanning Line Probe Microscopy: Beyond the Point Probe
    O'Neil, Glen D.
    Kuo, Han-Wen
    Lomax, Duncan N.
    Wright, John
    Esposito, Daniel, V
    ANALYTICAL CHEMISTRY, 2018, 90 (19) : 11531 - 11537
  • [32] Scanning probe microscopy - Foreword
    不详
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2004, 43 (7B): : VIII - VIII
  • [33] Scanning probe Microscopy for Nanotechnology
    Bykov, VA
    SEVENTH INTERNATIONAL SYMPOSIUM ON LASER METROLOGY APPLIED TO SCIENCE, INDUSTRY, AND EVERYDAY LIFE, PTS 1 AND 2, 2002, 4900 : 225 - 239
  • [34] ULTRAFAST SCANNING PROBE MICROSCOPY
    WEISS, S
    OGLETREE, DF
    BOTKIN, D
    SALMERON, M
    CHEMLA, DS
    APPLIED PHYSICS LETTERS, 1993, 63 (18) : 2567 - 2569
  • [35] Scanning Probe Microscopy - Foreword
    不详
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2000, 39 (6B): : IV - IV
  • [36] Scanning probe microscopy of polymers
    Journal of the American Chemical Society, 1999, 121 (23):
  • [37] Scanning probe microscopy for electrocatalysis
    Wang, Yuqing
    Skaanvik, Sebastian Amland
    Xiong, Xuya
    Wang, Shuangyin
    Dong, Mingdong
    MATTER, 2021, 4 (11) : 3483 - 3514
  • [38] Forces in scanning probe microscopy
    Meyer, E
    Hug, HJ
    Luthi, R
    Stiefel, B
    Guntherodt, HJ
    NANOSCALE SCIENCE AND TECHNOLOGY, 1998, 348 : 23 - 39
  • [39] Scanning Probe Microscopy 2023
    Nakajima, Ken
    Sumitomo, Koji
    Nakayama, Tomonobu
    Fukui, Ken-ichi
    Kageshima, Masami
    Kawai, Shigeki
    Komeda, Tadahiro
    Takahashi, Takuji
    Uchihashi, Takayuki
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2024, 63 (05)
  • [40] Scanning probe microscopy and nanotechnology
    Bykov, VA
    MOLECULAR MANUFACTURING, 1996, 2 : 67 - 76