Scanning probe microscopy as a scalpel to probe filament formation in conductive bridging memory devices

被引:19
|
作者
Celano, Umberto [1 ,2 ]
Goux, Ludovic [1 ]
Opsomer, Karl [1 ]
Iapichino, Martina [1 ]
Belmonte, Attilio [1 ,3 ]
Franquet, Alexys [1 ]
Hoflijk, Ilse [1 ]
Detavernier, Christophe [4 ]
Jurczak, Malgorzata [1 ]
Vandervorst, Wilfried [1 ,2 ]
机构
[1] IMEC, B-3001 Louvain, Belgium
[2] Katholieke Univ Leuven, Dept Phys & Astron IKS, B-3001 Heverlee, Belgium
[3] Katholieke Univ Leuven, Dept Phys & Astron SPS, B-3001 Heverlee, Belgium
[4] Univ Ghent, B-9000 Ghent, Belgium
关键词
CBRAM; C-AFM; Conductive filament; Resistive switching; GROWTH;
D O I
10.1016/j.mee.2013.06.001
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
One promising technology under consideration for future non-volatile memory is conductive bridging random access memory (CBRAM). These devices rely on a reversible change in resistance of a dielectric layer sandwiched between two metal electrodes. To unravel the underlying processes, we present in this work an innovative technique to observe conductive filament in CBRAM devices programmed under real operative conditions. We show the different properties of the conductive filament for the respective on/off resistive states. We demonstrate a novel usage of scanning probe microscopy whereby the tip is used to remove (de-process) the top electrode of the CBRAM device while subsequently we use conductive atomic force microscopy (C-AFM) to characterize the dielectric layer of fresh, set and reset devices. The devices are first programmed under their normal operational conditions, secondly exposed to the layer removal procedure and finally analyzed using C-AFM. Our results indicate that the on/off state of the devices can be linked to the presence or not of an highly conductive filament. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:67 / 70
页数:4
相关论文
共 50 条
  • [21] SCANNING PROBE MICROSCOPY
    RAYCHAUDHURI, AK
    CURRENT SCIENCE, 1994, 67 (11): : 886 - 887
  • [22] Scanning probe microscopy
    Nature Reviews Methods Primers, 1 (1):
  • [23] Formation and use of positioning marks in scanning probe microscopy
    Lozovskii, V. N.
    Chebotarev, S. N.
    Irkha, V. A.
    Valov, G. V.
    TECHNICAL PHYSICS LETTERS, 2010, 36 (08) : 737 - 738
  • [24] Formation and use of positioning marks in scanning probe microscopy
    V. N. Lozovskii
    S. N. Chebotarev
    V. A. Irkha
    G. V. Valov
    Technical Physics Letters, 2010, 36 : 737 - 738
  • [25] Electrical Scanning Probe Microscopy on Active Organic Electronic Devices
    Pingree, Liam S. C.
    Reid, Obadiah G.
    Ginger, David S.
    ADVANCED MATERIALS, 2009, 21 (01) : 19 - 28
  • [26] Scanning probe microscopy applications in failure analysis of semiconductor devices
    Wang, Xiang-Dong
    Wang, Xiang-Dong (Xiang-Dong.Wang@NXP.com), 1600, ASM International (22): : 20 - 25
  • [27] Scanning the Web for scanning probe microscopy
    Miller, S
    ANALYTICAL CHEMISTRY, 2003, 75 (19) : 433A - 434A
  • [28] High density charge storage memory with scanning probe microscopy
    Fujiwara, Ichiro
    Kojima, Sigeru
    Seto, Jun'etsu
    1996, JJAP, Minato-ku, Japan (35):
  • [29] High density charge storage memory with scanning probe microscopy
    Fujiwara, I
    Kojima, S
    Seto, J
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1996, 35 (5A): : 2764 - 2769
  • [30] ACCOUNTING FOR THE STIFFNESSES OF THE PROBE AND SAMPLE IN SCANNING PROBE MICROSCOPY
    BURNHAM, NA
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1994, 12 (03): : 2219 - 2221