An additive Gaussian process regression model for interpretable non-parametric analysis of longitudinal data

被引:48
|
作者
Cheng, Lu [1 ,2 ]
Ramchandran, Siddharth [1 ]
Vatanen, Tommi [3 ,4 ]
Lietzen, Niina [5 ,6 ]
Lahesmaa, Riitta [5 ,6 ]
Vehtari, Aki [1 ]
Lahdesmaki, Harri [1 ]
机构
[1] Aalto Univ, Dept Comp Sci, Sch Sci, FI-00076 Aalto, Finland
[2] Cardiff Univ, Sch Biosci, Organisms & Environm Div, Microbiomes Microbes & Informat Grp, Cardiff CF10 3AX, S Glam, Wales
[3] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
[4] Univ Auckland, Liggins Inst, Auckland 1023, New Zealand
[5] Univ Turku, Turku Ctr Biotechnol, FI-20520 Turku, Finland
[6] Abo Akad Univ, FI-20520 Turku, Finland
基金
芬兰科学院;
关键词
INFERENCE;
D O I
10.1038/s41467-019-09785-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Biomedical research typically involves longitudinal study designs where samples from individuals are measured repeatedly over time and the goal is to identify risk factors (covariates) that are associated with an outcome value. General linear mixed effect models are the standard workhorse for statistical analysis of longitudinal data. However, analysis of longitudinal data can be complicated for reasons such as difficulties in modelling correlated outcome values, functional (time-varying) covariates, nonlinear and non-stationary effects, and model inference. We present LonGP, an additive Gaussian process regression model that is specifically designed for statistical analysis of longitudinal data, which solves these commonly faced challenges. LonGP can model time-varying random effects and non-stationary signals, incorporate multiple kernel learning, and provide interpretable results for the effects of individual covariates and their interactions. We demonstrate LonGP's performance and accuracy by analysing various simulated and real longitudinal -omics datasets.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] An additive Gaussian process regression model for interpretable non-parametric analysis of longitudinal data
    Lu Cheng
    Siddharth Ramchandran
    Tommi Vatanen
    Niina Lietzén
    Riitta Lahesmaa
    Aki Vehtari
    Harri Lähdesmäki
    Nature Communications, 10
  • [2] Non-parametric Model Adaptive Control Based on Gaussian Process Regression
    Lin, Chenxu
    Li, Mingyao
    Zhu, Juanping
    2023 IEEE 12TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE, DDCLS, 2023, : 473 - 478
  • [3] Classification of non-parametric regression functions in longitudinal data models
    Vogt, Michael
    Linton, Oliver
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2017, 79 (01) : 5 - 27
  • [4] ESTIMATED NON-PARAMETRIC AND SEMI-PARAMETRIC MODEL FOR LONGITUDINAL DATA
    AL-Adilee, Reem Tallal Kamil
    Aboudi, Emad Hazim
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2021, 17 : 1963 - 1972
  • [5] Non-parametric regression for compositional data
    Di Marzio, Marco
    Panzera, Agnese
    Venieri, Catia
    STATISTICAL MODELLING, 2015, 15 (02) : 113 - 133
  • [6] lgpr: an interpretable non-parametric method for inferring covariate effects from longitudinal data
    Timonen, Juho
    Mannerstrom, Henrik
    Vehtari, Aki
    Lahdesmaki, Harri
    BIOINFORMATICS, 2021, 37 (13) : 1860 - 1867
  • [7] New local estimation procedure for a non-parametric regression function for longitudinal data
    Yao, Weixin
    Li, Runze
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2013, 75 (01) : 123 - 138
  • [8] Robust Non-Parametric Mortality and Fertility Modelling and Forecasting: Gaussian Process Regression Approaches
    Lam, Ka Kin
    Wang, Bo
    FORECASTING, 2021, 3 (01): : 207 - 227
  • [9] Non-parametric kernel regression for multinomial data
    Okumura, Hidenori
    Naito, Kanta
    JOURNAL OF MULTIVARIATE ANALYSIS, 2006, 97 (09) : 2009 - 2022
  • [10] Non-parametric regression with dependent censored data
    El Ghouch, Anouar
    Van Keilegom, Ingrid
    SCANDINAVIAN JOURNAL OF STATISTICS, 2008, 35 (02) : 228 - 247