New local estimation procedure for a non-parametric regression function for longitudinal data

被引:45
|
作者
Yao, Weixin [1 ]
Li, Runze [2 ]
机构
[1] Kansas State Univ, Manhattan, KS 66506 USA
[2] Penn State Univ, University Pk, PA 16802 USA
基金
中国国家自然科学基金;
关键词
Cholesky decomposition; Local polynomial regression; Longitudinal data; Profile least squares; SEMIPARAMETRIC ESTIMATION;
D O I
10.1111/j.1467-9868.2012.01038.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The paper develops a new estimation of non-parametric regression functions for clustered or longitudinal data. We propose to use Cholesky decomposition and profile least squares techniques to estimate the correlation structure and regression function simultaneously. We further prove that the estimator proposed is as asymptotically efficient as if the covariance matrix were known. A Monte Carlo simulation study is conducted to examine the finite sample performance of the procedure proposed, and to compare the procedure with the existing procedures. On the basis of our empirical studies, the newly proposed procedure works better than naive local linear regression with working independence error structure and the gain in efficiency can be achieved in moderate-sized samples. Our numerical comparison also shows that the newly proposed procedure outperforms some existing procedures. A real data set application is also provided to illustrate the estimation procedure proposed.
引用
收藏
页码:123 / 138
页数:16
相关论文
共 50 条
  • [1] THE TRIMMED MEAN IN NON-PARAMETRIC REGRESSION FUNCTION ESTIMATION
    Dhar, Subhra Sankar
    Jha, Prashant
    Rakshit, Prabrisha
    [J]. THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2022, : 133 - 158
  • [2] Classification of non-parametric regression functions in longitudinal data models
    Vogt, Michael
    Linton, Oliver
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2017, 79 (01) : 5 - 27
  • [3] Data assimilation by non-parametric local density estimation
    Torfs, P
    van Loon, E
    Wójcik, R
    Troch, P
    [J]. COMPUTATIONAL METHODS IN WATER RESOURCES, VOLS 1 AND 2, PROCEEDINGS, 2002, 47 : 1355 - 1362
  • [4] NON-PARAMETRIC ESTIMATION OF A REGRESSION FUNCION
    SCHUSTER, EF
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (02): : 695 - +
  • [5] A new test for the parametric form of the variance function in non-parametric regression
    Dette, Holger
    Neurneyer, Natalie
    Van Keilegorn, Ingrid
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2007, 69 : 903 - 917
  • [6] Local Linear M-estimation in non-parametric spatial regression
    Lin, Zhengyan
    Li, Degui
    Gao, Jiti
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2009, 30 (03) : 286 - 314
  • [7] Non-parametric regression for compositional data
    Di Marzio, Marco
    Panzera, Agnese
    Venieri, Catia
    [J]. STATISTICAL MODELLING, 2015, 15 (02) : 113 - 133
  • [8] Non-Parametric Sequential Estimation of a Regression Function Based on Dependent Observations
    Politis, Dimitris N.
    Vasiliev, Vyacheslav A.
    [J]. SEQUENTIAL ANALYSIS-DESIGN METHODS AND APPLICATIONS, 2013, 32 (03): : 243 - 266
  • [9] Local Dimensionality Reduction for Non-Parametric Regression
    Heiko Hoffmann
    Stefan Schaal
    Sethu Vijayakumar
    [J]. Neural Processing Letters, 2009, 29
  • [10] Local Dimensionality Reduction for Non-Parametric Regression
    Hoffmann, Heiko
    Schaal, Stefan
    Vijayakumar, Sethu
    [J]. NEURAL PROCESSING LETTERS, 2009, 29 (02) : 109 - 131