THE TRIMMED MEAN IN NON-PARAMETRIC REGRESSION FUNCTION ESTIMATION

被引:1
|
作者
Dhar, Subhra Sankar [1 ]
Jha, Prashant [2 ]
Rakshit, Prabrisha [3 ]
机构
[1] IIT Kanpur, Dept Math & Stat, Kanpur, India
[2] NIT Sikkim, Dept Math, Sikkim, India
[3] Rutgers State Univ, Dept Stat, New Brunswick, NJ USA
关键词
Heavy-tailed distribution; Kernel density estimator; L-estimator; the Nadaraya-Watson estimator; Robust estimator; ASYMPTOTIC-DISTRIBUTION; ROBUST ESTIMATORS; PREDICTION;
D O I
10.1090/tpms/1174
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article studies a trimmed version of the Nadaraya-Watson estimator for the unknown non-parametric regression function. The characterization of the estimator through the minimization problem is established, and its pointwise asymptotic distribution is derived. The robustness property of the proposed estimator is also studied through the breakdown point. Moreover, similar to the trimmed mean in the location model, and for a wide range of trimming proportion, the proposed estimator possesses good efficiency and high breakdown point, which is out of the ordinary properties for any estimator. Furthermore, the usefulness of the proposed estimator is shown for two benchmark real data and various simulated data.
引用
收藏
页码:133 / 158
页数:26
相关论文
共 50 条
  • [1] NON-PARAMETRIC ESTIMATION OF A REGRESSION FUNCION
    SCHUSTER, EF
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (02): : 695 - +
  • [2] Non-Parametric Sequential Estimation of a Regression Function Based on Dependent Observations
    Politis, Dimitris N.
    Vasiliev, Vyacheslav A.
    [J]. SEQUENTIAL ANALYSIS-DESIGN METHODS AND APPLICATIONS, 2013, 32 (03): : 243 - 266
  • [3] Estimation of non-parametric regression for dasometric measures
    Tellez, E. Ayuga
    Fernandez, A. J. Martin
    Garcia, C. Gonzalez
    Falero, E. Martinez
    [J]. JOURNAL OF APPLIED STATISTICS, 2006, 33 (08) : 819 - 836
  • [4] New local estimation procedure for a non-parametric regression function for longitudinal data
    Yao, Weixin
    Li, Runze
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2013, 75 (01) : 123 - 138
  • [5] APPLYING THE BINARY CODES IN BAYESIAN ESTIMATION TO ESTIMATE THE NON-PARAMETRIC REGRESSION FUNCTION
    Neamah, Mahdi Wahhab
    Radhy, Zainb Hassan
    [J]. INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2021, 17 : 1235 - 1241
  • [6] Non-Parametric Identification and Estimation of Truncated Regression Models
    Chen, Songnian
    [J]. REVIEW OF ECONOMIC STUDIES, 2010, 77 (01): : 127 - 153
  • [7] Efficient error variance estimation in non-parametric regression
    Li, Zhijian
    Lin, Wei
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2020, 62 (04) : 467 - 484
  • [8] Non-parametric regression estimation on closed Riemannian manifolds
    Pelletier, B
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2006, 18 (01) : 57 - 67
  • [9] Non-parametric estimation of camera response function
    Chatzis, Ioannis S.
    Dermatas, Evangelos S.
    [J]. CIRCUITS AND SYSTEMS FOR SIGNAL PROCESSING , INFORMATION AND COMMUNICATION TECHNOLOGIES, AND POWER SOURCES AND SYSTEMS, VOL 1 AND 2, PROCEEDINGS, 2006, : 385 - 388
  • [10] Wavelets and the theory of non-parametric function estimation
    Johnstone, IM
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 357 (1760): : 2475 - 2493