Sparse Signal Recovery With Minimization of 1-Norm Minus 2-Norm

被引:45
|
作者
Wen, Jinming [1 ,2 ]
Weng, Jian [1 ,2 ]
Tong, Chao [3 ]
Ren, Chao [4 ]
Zhou, Zhengchun [5 ]
机构
[1] Jinan Univ, Coll Informat Sci & Technol, Guangzhou 510632, Guangdong, Peoples R China
[2] Jinan Univ, Coll Cyber Secur, Guangzhou 510632, Guangdong, Peoples R China
[3] Beihang Univ, Sch Comp Sci & Engn, Beijing 100191, Peoples R China
[4] Univ Sci & Technol Beijing, Beijing Adv Innovat Ctr Mat Genome Engn, Beijing Engn & Technol Res Ctr Convergence Networ, Inst Artificial Intelligence, Beijing 100083, Peoples R China
[5] Southwest Jiaotong Univ, Sch Math, Chengdu 610031, Sichuan, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Sparse signal recovery; mutual coherence; sufficient condition; CHANNEL ESTIMATION; STABLE RECOVERY;
D O I
10.1109/TVT.2019.2919612
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The key aim of compressed sensing is to stably recover a K-sparse signals x from a linearmodel y = Ax + v, where v is a noise vector. Minimization of parallel to x parallel to(1) - parallel to x parallel to(2) is a recently proposed effective recovery method. In this paper, we show that if the mutual coherence mu of A satisfies mu < 1/3K, then this method can stably recover any K-sparse signalxbased ony and A. As far as we know, this is the first sufficient condition based on mutual coherence for such method.
引用
收藏
页码:6847 / 6854
页数:8
相关论文
共 50 条
  • [41] RFI SUPPRESSION BASED ON ATOMIC NORM MINIMIZATION IN SAR SIGNAL RECOVERY
    Liu, Hongqing
    Gan, Lu
    Li, Dong
    Truong, Trieu-Kien
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 2040 - 2044
  • [42] On Orthogonal Matrices Maximizing the 1-norm
    Banica, Teodor
    Collins, Benoit
    Schlenker, Jean-Marc
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2010, 59 (03) : 839 - 856
  • [43] Multi-channel nuclear norm minus Frobenius norm minimization for color image denoising
    Shan, Yiwen
    Hu, Dong
    Wang, Zhi
    Jia, Tao
    [J]. SIGNAL PROCESSING, 2023, 207
  • [44] Completion of Traffic Matrix by Tensor Nuclear Norm Minus Frobenius Norm Minimization and Time Slicing
    Miyata, Takamichi
    [J]. PROCEEDINGS OF 2024 IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM, NOMS 2024, 2024,
  • [45] 2-Norm Effective Isotropic Hookean Solids
    Bos, Len
    Slawinski, Michael A.
    [J]. JOURNAL OF ELASTICITY, 2015, 120 (01) : 1 - 22
  • [46] Exact 1-norm support vector machines via unconstrained convex differentiable minimization
    Mangasarian, Olvi L.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2006, 7 : 1517 - 1530
  • [47] A modified simplex method for solving 1-norm minimization problem in model predictive control
    Gupta, Yash P.
    [J]. CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2007, 85 (02): : 199 - 207
  • [48] Normalized frequency-domain block sign algorithm using ℓ1-norm minimization
    Choi, Jeong-Hwan
    Chang, Joon-Hyuk
    [J]. ELECTRONICS LETTERS, 2024, 60 (12)
  • [49] VARIATIONAL FK SPACES AND 2-NORM CONVERGENCE
    SEMBER, JJ
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1971, 119 (02) : 153 - &
  • [50] Unsupervised maximum margin feature selection via L 2,1-norm minimization
    Yang, Shizhun
    Hou, Chenping
    Nie, Feiping
    Wu, Yi
    [J]. NEURAL COMPUTING & APPLICATIONS, 2012, 21 (07): : 1791 - 1799