Unsupervised maximum margin feature selection via L 2,1-norm minimization

被引:27
|
作者
Yang, Shizhun [1 ]
Hou, Chenping [1 ]
Nie, Feiping [2 ]
Wu, Yi [1 ]
机构
[1] Natl Univ Def Technol, Dept Math & Syst Sci, Changsha 410073, Hunan, Peoples R China
[2] Univ Texas Arlington, Dept Comp Sci & Engn, Arlington, TX 76019 USA
来源
NEURAL COMPUTING & APPLICATIONS | 2012年 / 21卷 / 07期
基金
中国国家自然科学基金;
关键词
Feature selection; K-means clustering; Maximum margin criterion; Regularization;
D O I
10.1007/s00521-012-0827-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this article, we present an unsupervised maximum margin feature selection algorithm via sparse constraints. The algorithm combines feature selection and K-means clustering into a coherent framework. L (2,1)-norm regularization is performed to the transformation matrix to enable feature selection across all data samples. Our method is equivalent to solving a convex optimization problem and is an iterative algorithm that converges to an optimal solution. The convergence analysis of our algorithm is also provided. Experimental results demonstrate the efficiency of our algorithm.
引用
收藏
页码:1791 / 1799
页数:9
相关论文
共 50 条
  • [1] Unsupervised maximum margin feature selection via L2,1-norm minimization
    Shizhun Yang
    Chenping Hou
    Feiping Nie
    Yi Wu
    [J]. Neural Computing and Applications, 2012, 21 : 1791 - 1799
  • [2] Unsupervised Discriminative Feature Selection in a Kernel Space via L2,1-Norm Minimization
    Liu, Yang
    Wang, Yizhou
    [J]. 2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 1205 - 1208
  • [3] Unsupervised and Supervised Feature Selection for Incomplete Data via L2,1-Norm and Reconstruction Error Minimization
    Cai, Jun
    Fan, Linge
    Xu, Xin
    Wu, Xinrong
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (17):
  • [4] Robust discriminant feature selection via joint L2,1-norm distance minimization and maximization
    Yang, Zhangjing
    Ye, Qiaolin
    Chen, Qiao
    Ma, Xu
    Fu, Liyong
    Yang, Guowei
    Yan, He
    Liu, Fan
    [J]. KNOWLEDGE-BASED SYSTEMS, 2020, 207
  • [5] Fast unsupervised feature selection with anchor graph and ℓ2,1-norm regularization
    Haojie Hu
    Rong Wang
    Feiping Nie
    Xiaojun Yang
    Weizhong Yu
    [J]. Multimedia Tools and Applications, 2018, 77 : 22099 - 22113
  • [6] Fast unsupervised feature selection with anchor graph and l2,1-norm regularization
    Hu, Haojie
    Wang, Rong
    Nie, Feiping
    Yang, Xiaojun
    Yu, Weizhong
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (17) : 22099 - 22113
  • [7] Cost-sensitive feature selection via the l2,1-norm
    Zhao, Hong
    Yu, Shenglong
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2019, 104 : 25 - 37
  • [8] Robust feature selection via l2,1-norm in finite mixture of regression
    Li, Xiangrui
    Zhu, Dongxiao
    [J]. PATTERN RECOGNITION LETTERS, 2018, 108 : 15 - 22
  • [9] l2,1-norm minimization based negative label relaxation linear regression for feature selection
    Peng, Yali
    Sehdev, Paramjit
    Liu, Shigang
    Lie, Jun
    Wang, Xili
    [J]. PATTERN RECOGNITION LETTERS, 2018, 116 : 170 - 178
  • [10] Robust Feature Selection via Simultaneous Capped l2 -Norm and l2,1 -Norm Minimization
    Lan, Gongmin
    Hou, Chenping
    Yi, Dongyun
    [J]. PROCEEDINGS OF 2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA ANALYSIS (ICBDA), 2016, : 147 - 151