On Orthogonal Matrices Maximizing the 1-norm

被引:12
|
作者
Banica, Teodor [1 ]
Collins, Benoit [2 ,3 ]
Schlenker, Jean-Marc [4 ]
机构
[1] Cergy Pontoise Univ, Dept Math, F-95000 Cergy Pontoise, France
[2] Univ Lyon 1, Dept Math, F-69622 Villeurbanne, France
[3] Univ Ottawa, Ottawa, ON K1N 6N5, Canada
[4] Univ Toulouse 3, Inst Math Toulouse, UMR CNRS 5219, F-31062 Toulouse 9, France
关键词
orthogonal group; Hadamard matrix;
D O I
10.1512/iumj.2010.59.3926
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For U is an element of O(N) we have parallel to U parallel to(1) <= N root N, with equality if and only if U = H/ root N, with H Hadamard matrix. Motivated by this remark, we discuss in this paper the algebraic and analytic aspects of the computation of the maximum of the 1-norm on O(N). The main problem is to compute the k-th moment of the 1-norm on O(N), with k -> infinity, and we discuss here the general strategy for approaching this problem, with some explicit computations at k = 1, 2 and N -> infinity.
引用
收藏
页码:839 / 856
页数:18
相关论文
共 50 条
  • [1] Bounds for the 1-norm of the inverses of some triangular matrices
    Oquendo, Higidio Portillo
    Pacheco, Patricia Sanez
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 495 : 163 - 173
  • [2] A 1-NORM BOUND FOR INVERSES OF TRIANGULAR MATRICES WITH MONOTONE ENTRIES
    Berenhaut, Kenneth S.
    Guy, Richard T.
    Vish, Nathaniel G.
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2008, 2 (01): : 112 - 121
  • [3] Uniform bounds on the 1-norm of the inverse of lower triangular Toeplitz matrices
    Liu, X.
    McKee, S.
    Yuan, J. Y.
    Yuan, Y. X.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (05) : 1157 - 1170
  • [4] A block algorithm for matrix 1-norm estimation, with an application to 1-norm pseudospectra
    Higham, NJ
    Tisseur, F
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) : 1185 - 1201
  • [5] Integral geometry for the 1-norm
    Leinster, Tom
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2012, 49 (02) : 81 - 96
  • [6] 1-norm support vector machines
    Zhu, J
    Rosset, S
    Hastie, T
    Tibshirani, R
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 16, 2004, 16 : 49 - 56
  • [7] Concave 1-norm group selection
    Jiang, Dingfeng
    Huang, Jian
    [J]. BIOSTATISTICS, 2015, 16 (02) : 252 - 267
  • [8] Distance graphs on Rn with 1-norm
    Jer-Jeong Chen
    Gerard J. Chang
    [J]. Journal of Combinatorial Optimization, 2007, 14 : 267 - 274
  • [9] Efficient Reformulation of 1-Norm Ranking SVM
    Suehiro, Daiki
    Hatano, Kohei
    Takimoto, Eiji
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2018, E101D (03) : 719 - 729
  • [10] On the sparseness of 1-norm support vector machines
    Zhang, Li
    Zhou, Weida
    [J]. NEURAL NETWORKS, 2010, 23 (03) : 373 - 385