Behavior of a Competitive System of Second-Order Difference Equations

被引:22
|
作者
Din, Q. [1 ]
Ibrahim, T. F. [2 ,3 ]
Khan, K. A. [4 ]
机构
[1] Univ Poonch Rawalakot, Fac Basic & Appl Sci, Dept Math, Rawalakot 12350, Pakistan
[2] King Khalid Univ, Fac Sci & Arts SA, Dept Math, Abha 61914, Sarat Abida, Saudi Arabia
[3] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
[4] Univ Sargodha, Dept Math, Sargodha 40100, Pakistan
来源
关键词
PERIODIC-SOLUTIONS; STABILITY;
D O I
10.1155/2014/283982
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study the boundedness and persistence, existence, and uniqueness of positive equilibrium, local and global behavior of positive equilibrium point, and rate of convergence of positive solutions of the following system of rational difference equations: x(n+1) = (alpha(1) + beta(1) x(n-1))/(a(1) + b(1)y(n)), y(n+1) = (alpha(2) + beta(2) y(n-1))/(a(2) + b(2)x(n)), where the parameters alpha(i),beta(i),a(i), and b(i) for i=is an element of {1,2} and initial conditions x(0), x(-1), y(0), and y(-1) are positive real numbers. Some numerical examples are given to verify our theoretical results.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Dynamical Behavior of a System of Second-Order Nonlinear Difference Equations
    Bao, Hongmei
    [J]. INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 2015
  • [2] Asymptotic behavior of the solutions of second-order difference equations
    Medina, R
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 64 (03) : 233 - 246
  • [3] Stability analysis of a system of second-order difference equations
    Tran Hong Thai
    Vu Van Khuong
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (13) : 3691 - 3700
  • [4] Dynamics of a Second-order System of Nonlinear Difference Equations
    Tasdemir, Erkan
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2020, 11 (02): : 391 - 407
  • [5] Oscillatory behavior of the second-order nonlinear neutral difference equations
    Zhang, Zhenguo
    Dong, Wenlei
    Ping, Bi
    [J]. Journal of Applied Mathematics and Computing, 2001, 8 (01) : 111 - 128
  • [6] Oscillatory behavior of the second-order nonlinear neutral difference equations
    Zhenguo Zhang
    Wenlei Dong
    Bi Ping
    [J]. Korean Journal of Computational & Applied Mathematics, 2001, 8 (1) : 111 - 128
  • [7] The asymptotic behavior of solutions of nonlinear second-order difference equations
    Thandapani, E
    Marian, SL
    [J]. APPLIED MATHEMATICS LETTERS, 2001, 14 (05) : 611 - 616
  • [8] Oscillation of second-order difference equations
    Huang, Ying
    Wang, Jingjing
    Li, Tongxing
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (03): : 1238 - 1243
  • [9] GLOBAL ASYMPTOTIC STABILITY OF A SECOND-ORDER SYSTEM OF DIFFERENCE EQUATIONS
    Tran Hong Thai
    Vu Van Khuong
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2014, 45 (02): : 185 - 198
  • [10] GLOBAL DYNAMICS OF SOME SYSTEM OF SECOND-ORDER DIFFERENCE EQUATIONS
    Tran Hong Thai
    Nguyen Anh Dai
    Pham Tuan Anh
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (06): : 4159 - 4175