Behavior of a Competitive System of Second-Order Difference Equations

被引:22
|
作者
Din, Q. [1 ]
Ibrahim, T. F. [2 ,3 ]
Khan, K. A. [4 ]
机构
[1] Univ Poonch Rawalakot, Fac Basic & Appl Sci, Dept Math, Rawalakot 12350, Pakistan
[2] King Khalid Univ, Fac Sci & Arts SA, Dept Math, Abha 61914, Sarat Abida, Saudi Arabia
[3] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
[4] Univ Sargodha, Dept Math, Sargodha 40100, Pakistan
来源
关键词
PERIODIC-SOLUTIONS; STABILITY;
D O I
10.1155/2014/283982
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study the boundedness and persistence, existence, and uniqueness of positive equilibrium, local and global behavior of positive equilibrium point, and rate of convergence of positive solutions of the following system of rational difference equations: x(n+1) = (alpha(1) + beta(1) x(n-1))/(a(1) + b(1)y(n)), y(n+1) = (alpha(2) + beta(2) y(n-1))/(a(2) + b(2)x(n)), where the parameters alpha(i),beta(i),a(i), and b(i) for i=is an element of {1,2} and initial conditions x(0), x(-1), y(0), and y(-1) are positive real numbers. Some numerical examples are given to verify our theoretical results.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] The Solution of Second-Order Functional Difference Equations
    Senior, T. B. A.
    Michielssen, E.
    [J]. IEEE ANTENNAS AND PROPAGATION MAGAZINE, 2010, 52 (02) : 10 - 18
  • [22] Oscillation theorem for second-order difference equations
    Cheng, Jinfa
    Chu, Yuming
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (03): : 623 - 633
  • [23] Asymptotic equivalence of second-order difference equations
    Morchalo, J
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 238 (01) : 91 - 100
  • [24] An application on the second-order generalized difference equations
    Mariasebastin Maria Susai Manuel
    Adem Kılıçman
    Gnanadhass Britto Antony Xavier
    Rajan Pugalarasu
    Devadanam Suseela Dilip
    [J]. Advances in Difference Equations, 2013
  • [25] Nontrivial solutions of second-order difference equations
    Li, Yuhua
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [26] The existence of solutions for second-order difference equations
    Li, YJ
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2006, 12 (02) : 209 - 212
  • [27] An application on the second-order generalized difference equations
    Manuel, Mariasebastin Maria Susai
    Kilicman, Adem
    Xavier, Gnanadhass Britto Antony
    Pugalarasu, Rajan
    Dilip, Devadanam Suseela
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [28] On the Linearization of Second-Order Differential and Difference Equations
    Dorodnitsyn, Vladimir
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2006, 2
  • [29] Asymptotic behaviour of second-order difference equations
    Stevic, S
    [J]. ANZIAM JOURNAL, 2004, 46 : 157 - 170
  • [30] Second-order difference equations in diffraction theory
    Senior, TBA
    Legault, SR
    [J]. RADIO SCIENCE, 2000, 35 (03) : 683 - 690