Oscillatory behavior of the second-order nonlinear neutral difference equations

被引:3
|
作者
Zhenguo Zhang
Wenlei Dong
Bi Ping
机构
[1] HeBei Normal University,College of Mathematics and Information of Science
关键词
39A10; Neutral difference equation; Oscillatory behavior; Non-oscillatory solution;
D O I
10.1007/BF03011626
中图分类号
学科分类号
摘要
In this paper, we consider the oscillation of the second-order neutral difference equation\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\Delta ^2 \left( {x_n - px_{n - \tau } } \right) + q_n f\left( {x_{n - \sigma _n } } \right) = 0$$ \end{document} as well as the oscillatory behavior of the corresponding ordinary difference equation\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\Delta ^2 z_n + q_n f\left( {R\left( {n,\lambda } \right)z_n } \right) = 0$$ \end{document}.
引用
收藏
页码:111 / 128
页数:17
相关论文
共 50 条
  • [1] Oscillatory behavior of the second-order nonlinear neutral difference equations
    Zhang, Zhenguo
    Dong, Wenlei
    Ping, Bi
    [J]. Journal of Applied Mathematics and Computing, 2001, 8 (01) : 111 - 128
  • [2] Oscillatory behavior of second-order nonlinear neutral differential equations
    Jun Liu
    Xi Liu
    Yuanhong Yu
    [J]. Advances in Difference Equations, 2020
  • [3] Oscillatory Behavior of Second-Order Nonlinear Neutral Differential Equations
    Li, Tongxing
    Rogovchenko, Yuriy V.
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [4] Oscillatory behavior of second-order nonlinear neutral differential equations
    Liu, Jun
    Liu, Xi
    Yu, Yuanhong
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [5] Oscillatory and asymptotic behavior of second-order neutral difference equations with maxima
    Luo, JW
    Bainov, DD
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 131 (1-2) : 333 - 341
  • [6] Oscillatory behavior of second-order nonlinear noncanonical neutral differential equations
    Grace, Said R.
    Graef, John R.
    Li, Tongxing
    Tunc, Ercan
    [J]. ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2023, 15 (02) : 259 - 271
  • [7] Oscillatory and nonoscillatory behavior of second-order neutral delay difference equations II
    Agarwal, RP
    Manuel, MMS
    Thandapani, E
    [J]. APPLIED MATHEMATICS LETTERS, 1997, 10 (02) : 103 - 109
  • [8] OSCILLATORY BEHAVIOR OF SECOND-ORDER NEUTRAL DIFFERENCE EQUATIONS WITH POSITIVE AND NEGATIVE COEFFICIENTS
    Thandapani, Ethiraju
    Thangavelu, Krishnan
    Chandrasekaran, Ekambaram
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2009,
  • [9] OSCILLATORY BEHAVIOR OF SECOND ORDER NONLINEAR DIFFERENCE EQUATIONS WITH A NONLINEAR NONPOSITIVE NEUTRAL TERM
    Grace, Said R.
    Graef, John R.
    [J]. MISKOLC MATHEMATICAL NOTES, 2019, 20 (02) : 899 - 910
  • [10] Oscillatory Behavior of Second-Order Neutral Differential Equations
    Ruggieri, Marianna
    Santra, Shyam Sundar
    Scapellato, Andrea
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2022, 53 (03): : 665 - 675