Sensitivity and dimensionality of atomic environment representations used for machine learning interatomic potentials

被引:21
|
作者
Onat, Berk [1 ]
Ortner, Christoph [2 ]
Kermode, James R. [1 ]
机构
[1] Univ Warwick, Warwick Ctr Predict Modelling, Sch Engn, Coventry CV4 7AL, W Midlands, England
[2] Univ Warwick, Warwick Math Inst, Coventry CV4 7AL, W Midlands, England
来源
JOURNAL OF CHEMICAL PHYSICS | 2020年 / 153卷 / 14期
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
NEURAL-NETWORK POTENTIALS; PERFORMANCE;
D O I
10.1063/5.0016005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Faithfully representing chemical environments is essential for describing materials and molecules with machine learning approaches. Here, we present a systematic classification of these representations and then investigate (i) the sensitivity to perturbations and (ii) the effective dimensionality of a variety of atomic environment representations and over a range of material datasets. Representations investigated include atom centered symmetry functions, Chebyshev Polynomial Symmetry Functions (CHSF), smooth overlap of atomic positions, many-body tensor representation, and atomic cluster expansion. In area (i), we show that none of the atomic environment representations are linearly stable under tangential perturbations and that for CHSF, there are instabilities for particular choices of perturbation, which we show can be removed with a slight redefinition of the representation. In area (ii), we find that most representations can be compressed significantly without loss of precision and, further, that selecting optimal subsets of a representation method improves the accuracy of regression models built for a given dataset.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Metadynamics sampling in atomic environment space for collecting training data for machine learning potentials
    Dongsun Yoo
    Jisu Jung
    Wonseok Jeong
    Seungwu Han
    [J]. npj Computational Materials, 7
  • [32] Metadynamics sampling in atomic environment space for collecting training data for machine learning potentials
    Yoo, Dongsun
    Jung, Jisu
    Jeong, Wonseok
    Han, Seungwu
    [J]. NPJ COMPUTATIONAL MATERIALS, 2021, 7 (01)
  • [33] Performance Comparisons of NequIP and DPMD Machine Learning Interatomic Potentials for Tobermorites
    Zhu, Keming
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2024, 244
  • [34] Cross-platform hyperparameter optimization for machine learning interatomic potentials
    du Toit, Daniel Thomas F.
    Deringer, Volker L.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2023, 159 (02):
  • [35] Extending machine learning beyond interatomic potentials for predicting molecular properties
    Fedik, Nikita
    Zubatyuk, Roman
    Kulichenko, Maksim
    Lubbers, Nicholas
    Smith, Justin S.
    Nebgen, Benjamin
    Messerly, Richard
    Li, Ying Wai
    Boldyrev, Alexander, I
    Barros, Kipton
    Isayev, Olexandr
    Tretiak, Sergei
    [J]. NATURE REVIEWS CHEMISTRY, 2022, 6 (09) : 653 - 672
  • [36] Extending machine learning beyond interatomic potentials for predicting molecular properties
    Nikita Fedik
    Roman Zubatyuk
    Maksim Kulichenko
    Nicholas Lubbers
    Justin S. Smith
    Benjamin Nebgen
    Richard Messerly
    Ying Wai Li
    Alexander I. Boldyrev
    Kipton Barros
    Olexandr Isayev
    Sergei Tretiak
    [J]. Nature Reviews Chemistry, 2022, 6 : 653 - 672
  • [37] Machine learning scheme for fast extraction of chemically interpretable interatomic potentials
    Dolgirev, Pavel E.
    Kruglov, Ivan A.
    Oganov, Artem R.
    [J]. AIP ADVANCES, 2016, 6 (08):
  • [38] Accessing thermal conductivity of complex compounds by machine learning interatomic potentials
    Korotaev, Pavel
    Novoselov, Ivan
    Yanilkin, Aleksey
    Shapeev, Alexander
    [J]. PHYSICAL REVIEW B, 2019, 100 (14)
  • [39] Machine learning interatomic potentials in engineering perspective for developing cathode materials
    Kwon, Dohyeong
    Kim, Duho
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (35) : 23837 - 23847
  • [40] Multiscale machine-learning interatomic potentials for ferromagnetic and liquid iron
    Byggmastar, J.
    Nikoulis, G.
    Fellman, A.
    Granberg, F.
    Djurabekova, F.
    Nordlund, K.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (30)