Cross-platform hyperparameter optimization for machine learning interatomic potentials

被引:1
|
作者
du Toit, Daniel Thomas F. [1 ]
Deringer, Volker L. [1 ]
机构
[1] Univ Oxford, Dept Chem, Inorgan Chem Lab, Oxford OX1 3QR, England
来源
JOURNAL OF CHEMICAL PHYSICS | 2023年 / 159卷 / 02期
基金
英国科研创新办公室;
关键词
PERFORMANCE; GENERATION;
D O I
10.1063/5.0155618
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Machine-learning (ML)-based interatomic potentials are increasingly popular in material modeling, enabling highly accurate simulations with thousands and millions of atoms. However, the performance of machine-learned potentials depends strongly on the choice of hyperparameters-that is, of those parameters that are set before the model encounters data. This problem is particularly acute where hyperparameters have no intuitive physical interpretation and where the corresponding optimization space is large. Here, we describe an openly available Python package that facilitates hyperparameter optimization across different ML potential fitting frameworks. We discuss methodological aspects relating to the optimization itself and to the selection of validation data, and we show example applications. We expect this package to become part of a wider computational framework to speed up the mainstream adaptation of ML potentials in the physical sciences.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Cross-Platform Machine Learning Characterization for Task Allocation in IoT Ecosystems
    Cui, Wanlin
    Kim, Yeseong
    Rosing, Tajana S.
    [J]. 2017 IEEE 7TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE IEEE CCWC-2017, 2017,
  • [2] Machine Learning Interatomic Potentials for Heterogeneous Catalysis
    Tang, Deqi
    Ketkaew, Rangsiman
    Luber, Sandra
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2024,
  • [3] XPPE: Cross-Platform Performance Estimation of Hardware Accelerators Using Machine Learning
    Makrani, Hosein Mohammadi
    Sayadi, Hossein
    Mohsenin, Tinoosh
    Rafatirad, Setareh
    Sasan, Avesta
    Homayoun, Houman
    [J]. 24TH ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE (ASP-DAC 2019), 2019, : 727 - 732
  • [4] Investigating Cross-Platform Robustness for Machine Learning Based IDSs on 802.11 Networks
    Makanju, Adetokunbo
    Zincir-Heywood, A. Nur
    [J]. INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2007, 7 (06): : 1 - 9
  • [5] Sherpa: Robust hyperparameter optimization for machine learning
    Hertel, Lars
    Collado, Julian
    Sadowski, Peter
    Ott, Jordan
    Baldi, Pierre
    [J]. SOFTWAREX, 2020, 12
  • [7] Classical and machine learning interatomic potentials for BCC vanadium
    Wang, Rui
    Ma, Xiaoxiao
    Zhang, Linfeng
    Wang, Han
    Srolovitz, David J.
    Wen, Tongqi
    Wu, Zhaoxuan
    [J]. PHYSICAL REVIEW MATERIALS, 2022, 6 (11):
  • [8] Performance and Cost Assessment of Machine Learning Interatomic Potentials
    Zuo, Yunxing
    Chen, Chi
    Li, Xiangguo
    Deng, Zhi
    Chen, Yiming
    Behler, Joerg
    Csanyi, Gabor
    Shapeev, Alexander, V
    Thompson, Aidan P.
    Wood, Mitchell A.
    Ong, Shyue Ping
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 124 (04): : 731 - 745
  • [9] Polymers simulation using machine learning interatomic potentials
    Long, Teng
    Li, Jia
    Wang, Chenlu
    Wang, Hua
    Cheng, Xiao
    Lu, Haifeng
    Zhang, Ying
    Zhou, Chuanjian
    [J]. POLYMER, 2024, 308
  • [10] Hyperparameter optimization for machine learning models based on Bayesian optimization
    Wu, Jia
    Chen, Xiu-Yun
    Zhang, Hao
    Xiong, Li-Dong
    Lei, Hang
    Deng, Si-Hao
    [J]. Journal of Electronic Science and Technology, 2019, 17 (01): : 26 - 40