Future of dynamic random-access memory as main memory

被引:104
|
作者
Kim, Seong Keun [1 ]
Popovici, Mihaela [2 ]
机构
[1] Korea Inst Sci & Technol, Ctr Elect Mat, Seoul, South Korea
[2] IMEC, Semicond Technol & Syst Unit, Leuven, Belgium
基金
新加坡国家研究基金会;
关键词
nanoscale; memory; dielectric; metallic conductor; atomic layer deposition; ATOMIC LAYER DEPOSITION; SRTIO3; THIN-FILMS; EQUIVALENT OXIDE THICKNESS; INITIAL GROWTH-BEHAVIOR; DOPED TIO2 FILMS; ELECTRICAL-PROPERTIES; DIELECTRIC-CONSTANT; RU ELECTRODE; NM; PLASMA;
D O I
10.1557/mrs.2018.95
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Dynamic random-access memory (DRAM) is the main memory in most current computers. The excellent scalability of DRAM has significantly contributed to the development of modern computers. However, DRAM technology now faces critical challenges associated with further scaling toward the similar to 10-nm technology node. This scaling will likely end soon because of the inherent limitations of charge-based memory. Much effort has been dedicated to delaying this. Novel cell architectures have been designed to reduce the cell area, and new materials and process technologies have been extensively investigated, especially for dielectrics and electrodes related to charge storage. In this article, the current issues, recent progress in and the future of DRAM materials, and fabrication technologies are discussed.
引用
收藏
页码:334 / 339
页数:6
相关论文
共 50 条
  • [1] Future of dynamic random-access memory as main memory
    Seong Keun Kim
    Mihaela Popovici
    [J]. MRS Bulletin, 2018, 43 : 334 - 339
  • [2] DYNAMIC REFRESH FOR RANDOM-ACCESS MEMORY
    不详
    [J]. ELECTRONIC ENGINEERING, 1976, 48 (583): : 19 - 19
  • [3] Challenges and future directions for the scaling of dynamic random-access memory (DRAM)
    Mandelman, JA
    Dennard, RH
    Bronner, GB
    DeBrosse, JK
    Divakaruni, R
    Li, Y
    Radens, CJ
    [J]. IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2002, 46 (2-3) : 187 - 212
  • [4] 256K DYNAMIC RANDOM-ACCESS MEMORY
    BENEVIT, CA
    CASSARD, JM
    DIMMLER, KJ
    DUMBRI, AC
    MOUND, MG
    PROCYK, FJ
    ROSENZWEIG, W
    YANOF, AW
    [J]. ISSCC DIGEST OF TECHNICAL PAPERS, 1982, 25 : 76 - 77
  • [5] 64 KBIT MOS DYNAMIC RANDOM-ACCESS MEMORY
    NATORI, K
    OGURA, M
    IWAI, H
    MAEGUCHI, K
    TAGUCHI, S
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 1979, 26 (04) : 560 - 563
  • [6] GAAS/ALGAAS DYNAMIC RANDOM-ACCESS MEMORY CELL
    CHEN, CL
    GOODHUE, WD
    MAHONEY, LJ
    [J]. ELECTRONICS LETTERS, 1991, 27 (15) : 1330 - 1332
  • [7] 64 KBIT MOS DYNAMIC RANDOM-ACCESS MEMORY
    NATORI, K
    OGURA, M
    IWAI, H
    MAEGUCHI, K
    TAGUCHI, S
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1979, 14 (02) : 482 - 485
  • [8] A 256K DYNAMIC RANDOM-ACCESS MEMORY
    BENEVIT, CA
    CASSARD, JM
    DIMMLER, KJ
    DUMBRI, AC
    MOUND, MG
    PROCYK, FJ
    ROSENZWEIG, W
    YANOF, AW
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1982, 17 (05) : 857 - 862
  • [9] RANDOM-ACCESS HOLOGRAPHIC MEMORY
    GRAMMATIN, AP
    GUSEV, VK
    DOLGOVA, EV
    ZIMOGLYADOVA, EA
    MITSAI, VN
    NOVIKOV, AA
    PANKRATOV, VM
    SOMOV, VG
    FEDOROV, VB
    YURCHIKOV, BM
    [J]. SOVIET JOURNAL OF OPTICAL TECHNOLOGY, 1988, 55 (06): : 347 - 349
  • [10] AN 18K BIPOLAR DYNAMIC RANDOM-ACCESS MEMORY
    PENOYER, RF
    ELKAREH, B
    HOUGHTON, RJ
    LANE, PK
    SELFRIDGE, TA
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1980, 15 (05) : 861 - 865