Uniqueness of values of Aronsson operators and running costs in "tug-of-war" games

被引:9
|
作者
Yu, Yifeng [1 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92717 USA
基金
美国国家科学基金会;
关键词
Aronsson operators; Infinity Laplacian operator; Tug-of-war" games; MINIMIZATION PROBLEMS; LIPSCHITZ EXTENSIONS; ABSOLUTE MINIMIZERS; VISCOSITY SOLUTIONS; INFINITY LAPLACIAN; EQUATION; DERIVATION; F'(X));
D O I
10.1016/j.anihpc.2008.11.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A(H) be the Aronsson operator associated with a Hamiltonian H (x, z, p). Aronsson operators arise from L-infinity variational problems, two person game theory, control problems, etc. In this paper, we prove, under suitable conditions, that if u is an element of W-loc(1,infinity) (Omega) is simultaneously a viscosity solution of both of the equations A(H)(u) = f(x) and A(H)(u) = g(x) in Omega, (0.1) where f, g is an element of C(Omega), then f = g. The assumption u is an element of W-loc(1,infinity) (Omega) can be relaxed to u is an element of C(Omega) in many interesting situations. Also, we prove that if f, g, u is an element of C(Omega) and u is simultaneously a viscosity solution of the equations Delta infinity u/|Du|(2) = -f(x) and Delta infinity u/|Du|(2) = -g(x) in Omega, (0.2) then f = g. This answers a question posed in Peres, Schramm, Scheffield and Wilson [Y. Peres, O. Schramm, S. Sheffield, D.B. Wilson, Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc. Math. 22 (2009) 167-210] concerning whether or not the value function uniquely determines the running cost in the "tug-of-war" game. (C) 2008 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1299 / 1308
页数:10
相关论文
共 28 条
  • [1] Tug-of-war games and PDEs
    Rossi, Julio D.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2011, 141 : 319 - 369
  • [2] AN OBSTACLE PROBLEM FOR TUG-OF-WAR GAMES
    Manfredi, Juan J.
    Rossi, Julio D.
    Somersille, Stephanie J.
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (01) : 217 - 228
  • [3] Introduction to Random Tug-of-War Games and PDEs
    Manfredi, Juan J.
    [J]. REGULARITY ESTIMATES FOR NONLINEAR ELLIPTIC AND PARABOLIC PROBLEMS: CETRARO, ITALY 2009, 2012, 2045 : 133 - 151
  • [4] TUG-OF-WAR GAMES AND THE INFINITY LAPLACIAN WITH SPATIAL DEPENDENCE
    Gomez, Ivana
    Rossi, Julio D.
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (05) : 1959 - 1983
  • [5] DYNAMIC PROGRAMMING PRINCIPLE FOR TUG-OF-WAR GAMES WITH NOISE
    Manfredi, Juan J.
    Parviainen, Mikko
    Rossi, Julio D.
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2012, 18 (01) : 81 - 90
  • [6] GRADIENT AND LIPSCHITZ ESTIMATES FOR TUG-OF-WAR TYPE GAMES
    Attouchi, Amal
    Luiro, Hannes
    Parviainen, Mikko
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (02) : 1295 - 1319
  • [7] A mixed problem for the infinity Laplacian via Tug-of-War games
    Fernando Charro
    Jesus García Azorero
    Julio D. Rossi
    [J]. Calculus of Variations and Partial Differential Equations, 2009, 34 : 307 - 320
  • [8] On the connection between tug-of-war games and nonlocal PDEs on graphs
    Elmoataz, Abderrahim
    Buyssens, Pierre
    [J]. COMPTES RENDUS MECANIQUE, 2017, 345 (03): : 177 - 183
  • [9] Asymptotic Lipschitz Regularity for Tug-of-War Games with Varying Probabilities
    Arroyo, Angel
    Luiro, Hannes
    Parviainen, Mikko
    Ruosteenoja, Eero
    [J]. POTENTIAL ANALYSIS, 2020, 53 (02) : 565 - 589
  • [10] TUG-OF-WAR GAMES AND PARABOLIC PROBLEMS WITH SPATIAL AND TIME DEPENDENCE
    Del Pezzo, Leandro M.
    Rossi, Julio D.
    [J]. DIFFERENTIAL AND INTEGRAL EQUATIONS, 2014, 27 (3-4) : 269 - 288