A mixed problem for the infinity Laplacian via Tug-of-War games

被引:0
|
作者
Fernando Charro
Jesus García Azorero
Julio D. Rossi
机构
[1] U. Autonoma de Madrid,Departamento de Matemáticas
[2] FCEyN,Departamento de Matemática
[3] U. de Buenos Aires,undefined
[4] Ciudad Universitaria,undefined
关键词
35J60; 91A05; 49L25; 35J25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove that a function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ u\in\mathcal{C}(\overline{\Omega})}$$\end{document} is the continuous value of the Tug-of-War game described in Y. Peres et al. (J. Am. Math. Soc., 2008, to appear) if and only if it is the unique viscosity solution to the infinity Laplacian with mixed boundary conditions\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ \begin{aligned}-\Delta_{\infty}u(x)=0 \quad & {\rm in} \, \Omega,\\ \frac{\partial u}{\partial n}(x)=0 \quad \quad & {\rm on} \, \Gamma_N,\\ u(x)=F(x) \quad & {\rm on}\, \Gamma_D. \end{aligned} \right.$$\end{document}By using the results in Y. Peres et al. (J. Am. Math. Soc., 2008, to appear), it follows that this viscous PDE problem has a unique solution, which is the unique absolutely minimizing Lipschitz extension to the whole \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\Omega}}$$\end{document} (in the sense of Aronsson (Ark. Mat. 6:551–561, 1967) and Y. Peres et al. (J. Am. Math. Soc., 2008, to appear)) of the Lipschitz boundary data \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F:\Gamma_D \to \mathbb R }$$\end{document}.
引用
收藏
页码:307 / 320
页数:13
相关论文
共 50 条
  • [1] A mixed problem for the infinity Laplacian via Tug-of-War games
    Charro, Fernando
    Garcia Azorero, Jesus
    Rossi, Julio D.
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (03) : 307 - 320
  • [2] TUG-OF-WAR GAMES AND THE INFINITY LAPLACIAN WITH SPATIAL DEPENDENCE
    Gomez, Ivana
    Rossi, Julio D.
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (05) : 1959 - 1983
  • [3] Tug-of-war and the infinity Laplacian
    Peres, Yuval
    Schramm, Oded
    Sheffield, Scott
    Wilson, David B.
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 22 (01) : 167 - 210
  • [4] Nonlocal Tug-of-War and the Infinity Fractional Laplacian
    Bjorland, C.
    Caffarelli, L.
    Figalli, A.
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2012, 65 (03) : 337 - 380
  • [5] The obstacle problem for the p-laplacian via optimal stopping of tug-of-war games
    Marta Lewicka
    Juan J. Manfredi
    [J]. Probability Theory and Related Fields, 2017, 167 : 349 - 378
  • [6] The obstacle problem for the p-laplacian via optimal stopping of tug-of-war games
    Lewicka, Marta
    Manfredi, Juan J.
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2017, 167 (1-2) : 349 - 378
  • [7] The tug-of-war without noise and the infinity Laplacian in a wedge
    DeBlassie, Dante
    Smits, Robert G.
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (12) : 4219 - 4255
  • [8] AN OBSTACLE PROBLEM FOR TUG-OF-WAR GAMES
    Manfredi, Juan J.
    Rossi, Julio D.
    Somersille, Stephanie J.
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (01) : 217 - 228
  • [9] Biased tug-of-war, the biased infinity Laplacian, and comparison with exponential cones
    Yuval Peres
    Gábor Pete
    Stephanie Somersille
    [J]. Calculus of Variations and Partial Differential Equations, 2010, 38 : 541 - 564
  • [10] Biased tug-of-war, the biased infinity Laplacian, and comparison with exponential cones
    Peres, Yuval
    Pete, Gabor
    Somersille, Stephanie
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 38 (3-4) : 541 - 564