AN OBSTACLE PROBLEM FOR TUG-OF-WAR GAMES

被引:9
|
作者
Manfredi, Juan J. [1 ]
Rossi, Julio D. [2 ,3 ]
Somersille, Stephanie J. [4 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
[2] Univ Alicante, Dept Anal Matemat, E-03080 Alicante, Spain
[3] Univ Buenos Aires, FCEyN, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
[4] Dartmouth Coll, Dept Math, Hanover, NH 03755 USA
基金
美国国家科学基金会;
关键词
Obstacle Problem; Tug-of-War games; infinity laplacian; MEAN-VALUE CHARACTERIZATION;
D O I
10.3934/cpaa.2015.14.217
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the obstacle problem for the infinity Laplace equation. Given a Lipschitz boundary function and a Lipschitz obstacle we prove the existence and uniqueness of a super infinity-harmonic function constrained to lie above the obstacle which is infinity harmonic where it lies strictly above the obstacle. Moreover, we show that this function is the limit of value functions of a game we call obstacle tug-of-war.
引用
收藏
页码:217 / 228
页数:12
相关论文
共 50 条
  • [1] The obstacle problem for the p-laplacian via optimal stopping of tug-of-war games
    Marta Lewicka
    Juan J. Manfredi
    [J]. Probability Theory and Related Fields, 2017, 167 : 349 - 378
  • [2] DISCRETE APPROXIMATIONS TO THE DOUBLE-OBSTACLE PROBLEM AND OPTIMAL STOPPING OF TUG-OF-WAR GAMES
    Codenotti, Luca
    Lewicka, Marta
    Manfredi, Juan
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (10) : 7387 - 7403
  • [3] The obstacle problem for the p-laplacian via optimal stopping of tug-of-war games
    Lewicka, Marta
    Manfredi, Juan J.
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2017, 167 (1-2) : 349 - 378
  • [4] Tug-of-war games and PDEs
    Rossi, Julio D.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2011, 141 : 319 - 369
  • [5] A mixed problem for the infinity Laplacian via Tug-of-War games
    Fernando Charro
    Jesus García Azorero
    Julio D. Rossi
    [J]. Calculus of Variations and Partial Differential Equations, 2009, 34 : 307 - 320
  • [6] A mixed problem for the infinity Laplacian via Tug-of-War games
    Charro, Fernando
    Garcia Azorero, Jesus
    Rossi, Julio D.
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (03) : 307 - 320
  • [7] A limiting free boundary problem with gradient constraint and Tug-of-War games
    P. Blanc
    J. V. da Silva
    J. D. Rossi
    [J]. Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 1441 - 1469
  • [8] A limiting free boundary problem with gradient constraint and Tug-of-War games
    Blanc, P.
    da Silva, J. V.
    Rossi, J. D.
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (04) : 1441 - 1469
  • [9] Introduction to Random Tug-of-War Games and PDEs
    Manfredi, Juan J.
    [J]. REGULARITY ESTIMATES FOR NONLINEAR ELLIPTIC AND PARABOLIC PROBLEMS: CETRARO, ITALY 2009, 2012, 2045 : 133 - 151
  • [10] Tug-of-war
    Nolen, RS
    [J]. JAVMA-JOURNAL OF THE AMERICAN VETERINARY MEDICAL ASSOCIATION, 2005, 226 (04): : 500 - 502