DYNAMIC PROGRAMMING PRINCIPLE FOR TUG-OF-WAR GAMES WITH NOISE

被引:39
|
作者
Manfredi, Juan J. [1 ]
Parviainen, Mikko [2 ]
Rossi, Julio D. [3 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
[2] Helsinki Univ Technol, Inst Math, Helsinki 02015, Finland
[3] FCEyN UBA 1428, Dept Matemat, Buenos Aires, DF, Argentina
基金
美国国家科学基金会;
关键词
Dirichlet boundary conditions; Dynamic Programming Principle; p-Laplacian; stochastic games; two-player zero-sum games; MINIMIZING LIPSCHITZ EXTENSIONS; INFINITY LAPLACIAN;
D O I
10.1051/cocv/2010046
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider a two-player zero-sum-game in a bounded open domain Omega described as follows: at a point x epsilon Omega, Players I and II play an epsilon-step tug-of-war game with probability alpha, and with probability beta (alpha + beta = 1), a random point in the ball of radius epsilon centered at x is chosen. Once the game position reaches the boundary, Player II pays Player I the amount given by a fixed payoff function F. We give a detailed proof of the fact that the value functions of this game satisfy the Dynamic Programming Principle u(x) -alpha/2 {sup u(y)(y is an element of(B) over bar epsilon(x)) + inf(y is an element of(B) over bar epsilon(x)) u(y)} + beta f(B epsilon(x)) u(y)dy, for x is an element of Omega with u( y) = F( y) when y is not an element of Omega. This principle implies the existence of quasioptimal Markovian strategies.
引用
收藏
页码:81 / 90
页数:10
相关论文
共 50 条
  • [1] Tug-of-war games and PDEs
    Rossi, Julio D.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2011, 141 : 319 - 369
  • [2] AN OBSTACLE PROBLEM FOR TUG-OF-WAR GAMES
    Manfredi, Juan J.
    Rossi, Julio D.
    Somersille, Stephanie J.
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (01) : 217 - 228
  • [3] Introduction to Random Tug-of-War Games and PDEs
    Manfredi, Juan J.
    [J]. REGULARITY ESTIMATES FOR NONLINEAR ELLIPTIC AND PARABOLIC PROBLEMS: CETRARO, ITALY 2009, 2012, 2045 : 133 - 151
  • [4] Tug-of-war
    Nolen, RS
    [J]. JAVMA-JOURNAL OF THE AMERICAN VETERINARY MEDICAL ASSOCIATION, 2005, 226 (04): : 500 - 502
  • [5] Tug-of-War
    Henry, Ben Andrew
    [J]. SCIENTIST, 2016, 30 (12): : 44 - 44
  • [6] TUG-OF-WAR GAMES AND THE INFINITY LAPLACIAN WITH SPATIAL DEPENDENCE
    Gomez, Ivana
    Rossi, Julio D.
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (05) : 1959 - 1983
  • [7] The tug-of-war
    Sheffi, Y
    Mozaffar, S
    Moffat, RW
    Blascovich, JD
    LaHowchic, N
    [J]. HARVARD BUSINESS REVIEW, 2005, 83 (09) : 39 - +
  • [8] GRADIENT AND LIPSCHITZ ESTIMATES FOR TUG-OF-WAR TYPE GAMES
    Attouchi, Amal
    Luiro, Hannes
    Parviainen, Mikko
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (02) : 1295 - 1319
  • [9] Analysis of mechanics principle for the technology in tug-of-war sport
    Jin, Zhi Xiang
    Zhang, Qian
    [J]. COMPUTING, CONTROL, INFORMATION AND EDUCATION ENGINEERING, 2015, : 969 - 972
  • [10] A mixed problem for the infinity Laplacian via Tug-of-War games
    Fernando Charro
    Jesus García Azorero
    Julio D. Rossi
    [J]. Calculus of Variations and Partial Differential Equations, 2009, 34 : 307 - 320