DYNAMIC PROGRAMMING PRINCIPLE FOR TUG-OF-WAR GAMES WITH NOISE

被引:39
|
作者
Manfredi, Juan J. [1 ]
Parviainen, Mikko [2 ]
Rossi, Julio D. [3 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
[2] Helsinki Univ Technol, Inst Math, Helsinki 02015, Finland
[3] FCEyN UBA 1428, Dept Matemat, Buenos Aires, DF, Argentina
基金
美国国家科学基金会;
关键词
Dirichlet boundary conditions; Dynamic Programming Principle; p-Laplacian; stochastic games; two-player zero-sum games; MINIMIZING LIPSCHITZ EXTENSIONS; INFINITY LAPLACIAN;
D O I
10.1051/cocv/2010046
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider a two-player zero-sum-game in a bounded open domain Omega described as follows: at a point x epsilon Omega, Players I and II play an epsilon-step tug-of-war game with probability alpha, and with probability beta (alpha + beta = 1), a random point in the ball of radius epsilon centered at x is chosen. Once the game position reaches the boundary, Player II pays Player I the amount given by a fixed payoff function F. We give a detailed proof of the fact that the value functions of this game satisfy the Dynamic Programming Principle u(x) -alpha/2 {sup u(y)(y is an element of(B) over bar epsilon(x)) + inf(y is an element of(B) over bar epsilon(x)) u(y)} + beta f(B epsilon(x)) u(y)dy, for x is an element of Omega with u( y) = F( y) when y is not an element of Omega. This principle implies the existence of quasioptimal Markovian strategies.
引用
收藏
页码:81 / 90
页数:10
相关论文
共 50 条
  • [21] Transatlantic tug-of-war
    Malin, Clement B.
    [J]. Mining Voice, 2000, 6 (02): : 36 - 41
  • [22] Tug-of-war injury
    Sorbie, C
    [J]. ORTHOPEDICS, 2000, 23 (01) : 15 - 16
  • [23] INFLATION TUG-OF-WAR
    KENDRICK, JW
    [J]. CONFERENCE BOARD RECORD, 1973, 10 (03): : 2 - 5
  • [24] Tug-of-war with a tiger
    肖燕玲
    [J]. 学苑创造(7-9年级阅读), 2013, (7-9年级阅读) : 52
  • [25] A mixed problem for the infinity Laplacian via Tug-of-War games
    Charro, Fernando
    Garcia Azorero, Jesus
    Rossi, Julio D.
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (03) : 307 - 320
  • [26] Asymptotic Lipschitz Regularity for Tug-of-War Games with Varying Probabilities
    Ángel Arroyo
    Hannes Luiro
    Mikko Parviainen
    Eero Ruosteenoja
    [J]. Potential Analysis, 2020, 53 : 565 - 589
  • [27] Magellanic tug-of-war
    Paul Woods
    [J]. Nature Astronomy, 2018, 2 : 358 - 358
  • [28] Metabolic tug-of-war
    Levinson, Randy
    Farrell, Alison
    Basson, Michael
    Da Silva, Kevin
    Aranda, Victoria
    Borowski, Christine
    Stower, Hannah
    Benedetti, Brett
    [J]. NATURE MEDICINE, 2015, 21 (12) : 1385 - 1385
  • [29] Tug-of-war with Kolmogorov
    Fjellstrom, Carmina
    Nystrom, Kaj
    Vestberg, Matias
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 342 : 501 - 558
  • [30] SOLIDARITY TUG-OF-WAR
    POLLACK, M
    BUGAJSKI, J
    [J]. ENCOUNTER, 1982, 58 (01): : 68 - 71