Estimating the parameters of dynamical systems from Big Data using Sequential Monte Carlo samplers

被引:17
|
作者
Green, P. L. [1 ,3 ]
Maskell, S. [2 ,3 ]
机构
[1] Univ Liverpool, Sch Engn, Liverpool L69 7ZF, Merseyside, England
[2] Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 7ZF, Merseyside, England
[3] Univ Liverpool, Inst Risk & Uncertainty, Liverpool L69 7ZF, Merseyside, England
关键词
Big Data; Parameter estimation; Model updating; System identification; Sequential Monte Carlo sampler; TRAINING DATA; IDENTIFICATION; MODELS;
D O I
10.1016/j.ymssp.2016.12.023
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper the authors present a method which facilitates computationally efficient parameter estimation of dynamical systems from a continuously growing set of measurement data. It is shown that the proposed method, which utilises Sequential Monte Carlo samplers, is guaranteed to be fully parallelisable (in contrast to Markov chain Monte Carlo methods) and can be applied to a wide variety of scenarios within structural dynamics. Its ability to allow convergence of one's parameter estimates, as more data is analysed, sets it apart from other sequential methods (such as the particle filter). (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:379 / 396
页数:18
相关论文
共 50 条
  • [31] Stability of sequential Monte Carlo samplers via the Foster-Lyapunov condition
    Jasra, Ajay
    Doucet, Arnaud
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (17) : 3062 - 3069
  • [32] Monte Carlo sampling in diffusive dynamical systems
    Tapias, Diego
    Sanders, David P.
    Altmann, Eduardo G.
    CHAOS, 2018, 28 (05)
  • [33] Estimating DSGE Models using Multilevel Sequential Monte Carlo in Approximate Bayesian Computation
    Alaminos, David
    Ramirez, Ana
    Fernandez-Gamez, Manuel A.
    Becerra-Vicario, Rafael
    JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH, 2020, 79 (01): : 21 - 25
  • [34] Using sequential Monte Carlo for symbol timing recovery of OFDM systems
    Huang, Hai
    Yin, Chang-Chuan
    Peng, Duan
    Yue, Guang-Xin
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2007, 30 (06): : 77 - 80
  • [35] Sequential Monte Carlo methods for navigation systems
    Sotak, Milos
    PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (06): : 249 - 252
  • [36] SEQUENTIAL MONTE CARLO METHODS FOR ESTIMATING DYNAMIC MICROECONOMIC MODELS
    Blevins, Jason R.
    JOURNAL OF APPLIED ECONOMETRICS, 2016, 31 (05) : 773 - 804
  • [37] Sequential Monte Carlo methods for dynamic systems
    Liu, JS
    Chen, R
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (443) : 1032 - 1044
  • [38] Sequential Monte Carlo samplers for semi-linear inverse problems and application to magnetoencephalography
    Sommariva, Sara
    Sorrentino, Alberto
    INVERSE PROBLEMS, 2014, 30 (11)
  • [39] Joint estimation of timing delay and multipath parameters using sequential Monte Carlo
    Mahesh, LV
    Prabhu, KMM
    2004 9TH IEEE SINGAPORE INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS (ICCS), 2004, : 405 - 409
  • [40] Structure from motion using sequential Monte Carlo methods
    Qian, G
    Chellappa, R
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 59 (01) : 5 - 31